1. Al-Hamdan, O. Z., Pierson, F. B., Nearing, M. A., Williams, C. J., Hernandez, M., Boll, J., Nouwakpo, S. K., Weltz, M. A., & Spaeth, K. (2017). Developing a parameterization approach for soil erodibility for the Rangeland Hydrology and Erosion Model (RHEM). Transactions of the ASABE, 60(1), 85-94. [
DOI:10.13031/trans.11559]
2. Arabkhedri, M., & Khani, S. H. (2001). Validity of Extrapolation Methods for Estimating the Mean Annual Suspended Sediment yield (17 hydrometric Stations in the Country). Journal of Agriculture and Natural Resources Journal of Agricultural Sciences and Natural Resources, 3, 123-132 (In Persian).
3. Barzegari banadkohi., F. (2015, December 2015.). Construction and performance evaluation of digital suspended sediment sampler International Conference on Science and Engineering, Dubai UAE (In Persian).
4. Bshir, D., & Garba, M. (2003). Hydrological monitoring and information system for sustainable basin management. In Proceedings of the First Annual Conference of the Nigerian Association of Hydrological Sciences, Federal University of Technology, , Yola, Adamawa, Nigeria
5. Buytaert, W., Dewulf, A., De Bièvre, B., Clark, J., & Hannah, D. M. (2016). Citizen science for water resources management: toward polycentric monitoring and governance? In (Vol. 142, pp. 01816002): American Society of Civil Engineers. [
DOI:10.1061/(ASCE)WR.1943-5452.0000641]
6. Depetris, P. (2021). The Importance of Monitoring River Water Discharge. Frontiers in Water, 3, 745912. [
DOI:10.3389/frwa.2021.745912]
7. Dosskey, M., Hoagland, K., & Brandle, J. (2007). Change in filter strip performance over ten years. Journal of soil and water conservation, 62(1), 21-32.
8. Edwards, T. K., Glysson, G. D., Guy, H. P., & Norman, V. W. (1999). Field methods for measurement of fluvial sediment. US Geological Survey Denver, CO.
9. Eltner, A., Mulsow, C., & Maas, H.-G. (2013). Quantitative measurement of soil erosion from TLS and UAV data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 119-124. [
DOI:10.5194/isprsarchives-XL-1-W2-119-2013]
10. Gellis, A. C. (2013). Factors influencing storm-generated suspended-sediment concentrations and loads in four basins of contrasting land use, humid-tropical Puerto Rico. Catena, 104, 39-57. [
DOI:10.1016/j.catena.2012.10.018]
11. Heidarnejad, M., Golmaee, S. H., Mosaedi, A., & Ahmadi, M. Z. (2006). Estimation of sediment volume in Karaj Dam Reservoir (Iran) by hydrometry method and a comparison with hydrography method. Lake and Reservoir Management, 22(3), 233-239. [
DOI:10.1080/07438140609353900]
12. Hunger, M., & Döll, P. (2008). Value of river discharge data for global-scale hydrological modeling. Hydrology and Earth System Sciences, 12(3), 841-861. [
DOI:10.5194/hess-12-841-2008]
13. Isazade, G. V., & Aliegigy, B. Z. (2022). Simulation of Flood Prone Areas using Perceptron Neural Network and GIS (Study Area: Zolachai watershed, Salmas City), . Journal of Watershed Management Research, 12(24), 108-197(In Persian). [
DOI:10.52547/jwmr.12.24.97]
14. Kiyani Majd, M., Nohtani, M., Dehmardeh Ghaleh No, M. R., & Shikh, Z. (2023). Simulating the Runoff of Watersheds in Dry Areas on A Monthly Scale using the SWAT Model (Case Study: Lar Watershed), . Journal of Watershed Management Research, 14(27), 135-145(In Persian). [
DOI:10.61186/jwmr.14.27.135]
15. Kothyari, U., Tiwari, A., & Singh, R. (1997). Estimation of temporal variation of sediment yield from small catchments through the kinematic method. Journal of hydrology, 203(1-4), 39-57. [
DOI:10.1016/S0022-1694(97)00084-X]
16. Mohammadi Ostadkalateh, A. (2002). Optimizing the relationship between discharge and suspended sediment in selected stations of Gorganrud River Gorgan University] (In Persian).
17. National Meteorological Organization of Iran. (2021).
18. Nehls, T., Nam Rim, Y., & Wessolek, G. (2011). Technical note on measuring run-off dynamics from pavements using a new device: the weighable tipping bucket. Hydrology and Earth System Sciences, 15(5), 1379-1386. [
DOI:10.5194/hess-15-1379-2011]
19. Nystuen, J. A. (1999). Relative performance of automatic rain gauges under different rainfall conditions. Journal of Atmospheric and Oceanic Technology, 16(8), 1025-1043.
https://doi.org/10.1175/1520-0426(1999)016<1025:RPOARG>2.0.CO;2 [
DOI:10.1175/1520-0426(1999)0162.0.CO;2]
20. Pinson, W. T., Yoder, D. C., Buchanan, J. R., Wright, W. C., & Wilkerson, J. B. (2004). Design and evaluation of an improved flow divider for sampling runoff plots. Applied Engineering in Agriculture, 20(4), 433-438. [
DOI:10.13031/2013.16489]
21. Porhemmat, J., & Dumiri Ganji, M. (2005). Analysis of sediment supply relations in the hydrometric stations of Handijan-Jarhiri basin. Proceedings of the 3rd National Conference on Erosion and Sedimentation in Tehran, Iran's Soil Conservation and Watershed Research Center., Tehran (In Persian).
22. Radatz, T. F., Thompson, A. M., & Madison, F. W. (2013). Soil moisture and rainfall intensity thresholds for runoff generation in southwestern Wisconsin agricultural watersheds. Hydrological Processes, 27(25), 3521-3534. [
DOI:10.1002/hyp.9460]
23. Sadeghi, S., Mizuyama, T., Miyata, S., Gomi, T., Kosugi, K., Fukushima, T., Mizugaki, S., & Onda, Y. (2008). Determinant factors of sediment graphs and rating loops in a reforested watershed. Journal of hydrology, 356(3-4), 271-282. [
DOI:10.1016/j.jhydrol.2008.04.005]
24. Sharma, R., Mishra, D. R., Levi, M. R., & Sutter, L. A. (2022). Remote Sensing of Surface and Subsurface Soil Organic Carbon in Tidal Wetlands: A Review and Ideas for Future Research. Remote Sensing, 14(12), 2940. [
DOI:10.3390/rs14122940]
25. Stagnaro, M., Colli, M., Lanza, L. G., & Chan, P. W. (2016). Performance of post-processing algorithms for rainfall intensity using measurements from tipping-bucket rain gauges. Atmospheric Measurement Techniques, 9(12), 5699-5706. [
DOI:10.5194/amt-9-5699-2016]
26. Stewart, B. (2015). Measuring what we manage-the importance of hydrological data to water resources management. Proceedings of the International Association of Hydrological Sciences, 366, 80-85. [
DOI:10.5194/piahs-366-80-2015]
27. Stomph, T., De Ridder, N., Steenhuis, T., & Van de Giesen, N. (2002). Scale effects of Hortonian overland flow and rainfall‐runoff dynamics: Laboratory validation of a process‐based model. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 27(8), 847-855. [
DOI:10.1002/esp.356]
28. Tan, Q., Liu, S., Chen, X., Wu, M., Wang, H., Yin, H., He, D., Xiong, H., & Zhang, J. (2012). Design and evaluation of a novel evodiamine-phospholipid complex for improved oral bioavailability. Aaps Pharmscitech, 13, 534-547. [
DOI:10.1208/s12249-012-9772-9]
29. Telvari, A. R. (2003). The relationship between the amount of suspended sediment and some watershed characteristics in Dez and Karkheh sub-basins. . Research and Construction,, 3(5), 56-68 (In Persian).
30. Terakawa, A. (2003). Hydrological data management: Present state and trends. Secretariat of the World Meteorological Organization.
31. USGS. (2006). Benefits of the USGS Stream Gauging Program - Users and uses of US stream flow data. . 82.
32. WMO. (2008). Guide to Hydrological Practices. World Meteorological Organization.
33. Wood, E. F. (1998). 'Hydrologic measurements and observations: An assessment of needs. Proc., 1997 Abel Wolman Distinglished Lecture and Symposium on Hydrologic Sciences,
34. Yu, B., Shi, Z., & Zhang, Y. (2023). Linking hydrological and landscape characteristics to suspended sediment-discharge hysteresis in Wudinghe River Basin on the Loess Plateau, China. Catena, 228, 107169. [
DOI:10.1016/j.catena.2023.107169]
35. Zoratipour, A., Mahdavi, M., Khalighi Sigaroudi, S., Salajgheh, A., & Shams al-Maali, N. (2008). Investigating the effect of sediment classification on the improvement of hydrological methods for estimating the suspended load of rivers (case study: Taleghan watershed). Iranian Natural Resources Journal, 4(61), 819-831 (In Persian).