بررسی آستانه شروع رواناب در واحدهای مارنی سازندگی زمین شناسی استان زنجان با استفاده از دستگاه بارانساز مصنوعی

پ. عبیدی نژاد، س. فیض نیا، ج. ر. پیروون، ف. ا. فیاضی و ع. طبایخ شعبانی

چکیده

واحدهای مارنی در حدود ۴۷۸ کیلومترمربع از سطح استان زنجان (معادل ۲۰%) را تشکیل می‌دهند. بررسی روابط بین زمان شروع، حجم و فردی رواناب در واحدهای مارنی نشان می‌دهد که معادله رگرسیونی بین اینها از نوع درجه دوم بوده و تا حدی درون‌همگامی را تفسیر نماید. تجزیه و تحلیل آماری داده‌ها نشان می‌دهد که اثر واحدهای مارنی و شیب بر تغییرات زمان شروع رواناب کاملاً در سطح یک درصد معنی‌دار می‌باشد. در حالیکه اثر اقلیم معنی‌دار نیست. واحدهای مارنی براساس زمان شروع رواناب به سه گروه قابل تفکیک می‌باشد. بطوریکه واحد مارنی پلیسو (PL) و واحد مارنی قم (OM) هر گروه به تنها یک گروه و واحدهای مارنی یافتههای دایره‌ای (OL) و مارن اتوس (EM) گفته می‌شود. در دو گروه این سه گروه از نظر تفاوت در زمان شروع رواناب به هم‌گرایی اختلاف معنی‌داری دارد که بدین داشته تفاوت در خصوصیات آب‌زگی شیمیایی آنهاست. بطوریکه هر چقدر میزان نیستی موجود در آنها باشد. بدین دیدگاه این دسته گروه یک گروه این سه گروه از نظر تأثیر شیب و اقلیم بر زمان شروع رواناب بررسی‌های صورت گرفته نشان‌دهنده معنی‌دار بودن تأثیر این دو در سطح یک درصد بر زمان شروع رواناب می‌باشد.

واژه‌های کلیدی: مارن، حجم رواناب، ضرب رواناب، بارانساز، استان زنجان

مقدمه

نپشت‌های مارنی به دلیل داشتن استراتیگی خاصی در حفظ آب، سطح مایع و کیفیت آب طبیعی در زمین‌شناسی نقش مهمی دارند. به‌طور عادی، این مکان‌ها می‌توانند منابع آب جدیدی برای مصرف انسانی و کشاورزی باشند. إلزام‌های زمین‌شناسی شامل شناسایی، تحلیل و ارزیابی این منابع آب است. تحلیل زمان‌های شروع رواناب و حجم رواناب و ارتباط آن‌ها با عوامل مختلف برای به‌تر شناسایی منابع آب و بهبود استراتژی‌های بهره‌برداری از آن‌ها ضروری است.
بررسی استانه شروع روان‌بازی و واحدهای مارکت سازنده‌های زمین و نشینی استان زنجان\\n\\nبرخورد دارد. در حوزه‌هایی که دارای واحدهای مارکت‌هایی هستند، قسمت عمده‌ای از رسواب‌ها از این واحدها تولید می‌شود، از این رو نقش مهمی در کاهش عمر مفید سده‌های دانکرک دارد. با توجه به پتانسیل بالای وقوع انواع خسارت‌های فرسایشی اعم از سطحی، شباهال، ابراهی، خوندی و تنولو و رسوب‌زایی بالا، شناخت جامع مارکت‌ها و سطوح‌های محتوایی که در نهایت منجر به شناسایی عوامل موثر بر فرسایش پذیری مارکت‌ها می‌شود، اردیقهای ضروری است. با شناخت شاخص‌های موثر بر فرسایش پذیری مارکت‌ها و طبقه‌بندی آنها می‌تواند به‌طور کامل ایجاد کندن. اما به رغم شیوه‌های موجود، استفاده از بارز‌های سازنده‌ای به دلیل مزایای فوق برای پژوهش در زمینه جنبه‌های مختلف فرسایش و تولید رسواب در سطح جهان رایگی است (3).

کامفورست (10) با استفاده از بارز‌های کوچک و اندازه‌گیری میزان روان‌بازی شکل از تاریک و همچنین شاید ناگهانی سایر‌ها متفاوت عواملی که مقدار روان‌بازی و غلظت‌های رسواب برای خاک‌های مختلف هنگام دریافت به مقدار روان‌بازی و غلظت‌های رسواب برای خاک‌های مختلف به شدت متغیر بوده است. هیچ‌سانا (8) میزان فرسایش‌های فیزیکی نهشته‌های کواترینی در جنوب شرقی استرالیا را با استفاده از تکنیک‌های برآورد و آزمایش به کاربرد بارز‌های سازنده و شیمیایی که در این تحصیل مقداری فرسایش در مناطق تیم‌خاری بطور متوسط 6/7 و برای سنگ بستر 19 میلی‌متر در سال به دست آمد.\\n
فرض‌های (4) به بررسی تأثیر عوامل فیزیکی، شیمیایی و آب و هواپی در تولید رسواب ناشی بطور طبقه‌بندی متفاوت روش بررسی فرا آن‌دی که اثرهای
دانشگاه دمیریت جوزه آبیجاوی سال اول، شماره ۲۴، پایان و زمستان ۱۳۸۹

زمینه میزان روان‌بندی و میزان روان‌بندی در فرسایش سطحی در خاک‌های سی‌سی از واحدهای رسانه‌کاربندی برداختن. چه‌چنین افزایش گیری روان‌بندی و میزان روان‌بندی و سطح پوشش یک متر مربع استفاده گردید. براساس نتایج دست آمده شاخص شکستگی دوباره و درصد مواد تولیدی همیستگی بسیار بالایی با مقدار روان‌بندی تولیدی داشته‌اند.

در پژوهشداران (۰۵) بررسی حساسیت به فرسایش و تولید روابط هشته‌های کواترین و نوع کاربری اراضی در جوزه‌سیری کوه‌هایی واقع در جوزه ایمیژز‌بادودر با استفاده از شیب‌ساز باران اقدام به آزمایش نمود. بررسی‌ها نشان داد که فرسایش‌پذیری و تولید رسوب در مشخصات مختلف کواترین با یکدیگر اختلاف معنی‌دار داشتند.

مایین (۴۰) در بررسی منظر روان‌بندی و رسوب در مارنهای فراتسه با کمک باران‌ساز به این نتیجه رسیدند که در شدت متوسط و تداوم ۲۰ دقیقه ضرب روان‌بندی در مارنهای حدود ۷۵ تا ۸۰ درصد می‌باشد. آن‌زمان (۵) با کمک باران‌ساز عامل‌های مختلف بر ایجاد روان‌بندی و فرسایش‌پذیری در مارنهای اسپانیا مورد بررسی قرار داده و به این نتیجه رسیدند که میزان روان‌بندی با شدت بارندگی رابطه نماینده دارد و میزان هدرفتان خاک نیز با شدت افزایش می‌یابد. حسین زاده نفوذی (۶) در بررسی فرسایش پذیری مارنهای منطقه ایونیکی با کمک باران‌ساز و پس از انجام ارزیابی میزان روان‌بندی و سطح نتایج این‌ها نتیجه رسیدند که چای گیاهی به ویژگی‌های مشابه سازنده مانند K و EC و SAR مارنه به شمار می‌رود. حسینی (۷) بررسی
شکل 1- نقشه موقعیت و پراکنش واحدهای مارنی استان زنجان.

سپس برای تهیه واحدهای کاری اقدام به تهیه نقشه شیب و طبقه بندی از آن در سه گروه ۱۰۰-۳۳۰، ۳۳۰-۱۰۰ و درصد و نقشه اقلیمی
ایجاد بارش مصنوعی با استفاده از یک دستگاه باران ساز مصنوعی قابل حمل در صحرا استفاده شد که از یک تشکیل به ابعاد ۱۸۱ متر تشکیل شده است (شکل ۴)

با تلفیق و روی هم قرار دادن این سه لایه در محیط GIS نقشه واحدهای کاری در کلاس یا رده تهیه شد (شکل ۵). در ادامه از هر کدام از واحدهای کاری ۳ نمونه انتخاب و با انجام عملیات میدانی اقدام به انجام آزمایش...
لوله‌های باریک در نظر گرفته، به طوری که قطر لوله ۶/۶ میلی‌متر و طول آن ۸ میلی‌متر است. عوامل موثر بر شدت باران تولید شده به ارتفاع آب یا فشار آب روی روزنه‌ها، قطر میانه روزنه‌ها و دما دارد. برای اینکه قطعات همواره در یک نقطه ثابت روبه روی زمین نخست به‌طور کلی باید سطح زمین با خیس نمایند. از یک دستگاه موتوری پلاسیک با ضخامت Plexiglass جنس تشکل از نوع ۸ میلی‌متر در بند و کف می‌باشد. فاصله روزنه‌ها در امتیاز طول و عرض باران ساز ۸ میلی‌متر است. بنابراین مجموع کل روزنه‌ها ۱۶۹ عدد می‌باشد و ارتفاع دیواره تشکل ۲۰ سانتی‌متر و قطر روزنه‌ها ۶/۶ میلی‌متر است. با توجه به اینکه ضخامت کف تشکل ۸ میلی‌متر است، لذا می‌توان باران را از نوع
قراریست که گاهی به مبانی لاشهایی از ماسه در نتیجه پلاستیک گیری می‌شود. بعضی از این واحد در مناطق مختلف از ۲۰۰ تا ۴۰۰ متر در تغییر است. این واحد در درون خود و در بردانده لاشه‌هایی از توده‌ها و گاهی نمک است. یکی از مناطق کاریکتری این نوع مارن در سطح استان زنجان که پیشین قرار گرفته‌های در حوزه آب‌های پژوه‌سیر سفید‌روند معرفی شده و در این مناطق به صورت تپه‌های به پشتی‌های و براساس تحقیقات مختلف صورت گرفته‌های یکی از منابع تولید رسوب جمع شده در پشت سد سفید رود می‌باشد. این واحد در این منطقه به صورت تپه‌های به پشتی‌های و براساس تحقیقات مختلف صورت گرفته‌های یکی از منابع تولید رسوب جمع شده در پشت سد سفید رود می‌باشد.

K2m

مانر کرتاسه (K2m) این واحد صورت یک رخنمک کوچک در بخش به تقسیم‌بندی در باخته روسیه‌ای بلورین نمایان است. این واحد از انتهای سری مارن، سنگ‌های آهکی و شیل‌های خاکتری پیدا آمده است. سنگ‌های آهکی که توسط زنجان بند به پشتی‌های به چسبی‌های به هم چسبیده و ارتفاع با سطوح فرسایشی صاف و پیک سطح گسترده‌است دارد که از انتهای این منطقه شامل منابع قابل‌توجهی و شامل پلی‌سیستمی (Plm) شامل پلاستیکی و پلی‌سیستمی این شال (Plc) تشکیل شده اند. این مجموع‌های آواری که در محیط کم‌زرفی دریاچه‌ای لبه نزدیک به شبه جزیره بارونگ مختارین و محدود با لیتلیوپیتی مارن سیز و سفید در تغییر زمینه شناسی حل‌بند حاشیه جاده زنجان- پیچ در شمال شرقی روسیه ارکوینی قرار گرفته است.
سازند قم (O-Mq)
طبقاتی از آهک‌های کم عمل و مارن که بطور مشخصی از نظر رنگ و لیتوژونی از سازند زیرین (سازند قرمز زیرین) و بالایی (سازند قرمز بالاپینی) متمایز هستند سازند قم نامیده شده است. در استان زنجان لیتوژونی غالب سازند قم شامل آهک توده‌ای و ضخیم، مارن سپید، آهک ترپیکی و مارن، زیپس، سفید رنگ، مارن سبز، زیتونی و آهک کرم رنگ است.

سازند قرمز بالاپینی
این سازند از ۲ واحد مارنی تشکیل شده است. واحد اولی (M1) از مارن‌های والوی تشکیل شده است. واحد M2 که در تناوب با آهک‌های کم کرم، شیل و ماسه سنگ‌های باشند و با رنگ‌های منظم (قرمز، سبز، زیتونی) می‌باشد، دارد (شکل ۲)، با واحد M2 متمایز می‌شود.

شکل ۶- نمایی از واحد‌های مارنی در منطقه چهاراباد زنجان.

نتایج و بحث
زمان شروع رواناب در واحد‌های مارنی
برای سنگ‌شاخ و ارزیابی زمان شروع رواناب در هر یک از واحد‌های کاری با انجام پیمایش صحرا و اقدام به انتخاب سه نمونه گردید. سپس با استفاده از تکنیک‌های مورد نظر که

قبل توضیح داده شد خصوصیات زمان شروع رواناب هریک از واحد‌های کاری به همراه تعیین از سابع خصوصیات موثر در زمان شروع رواناب انداده‌گیری گردید که نتایج آن در جدول ۱ ارائه شده است. براساس داده‌های PL 5 Ar نتایج و بحث
زمان شروع رواناب در واحد‌های مارنی
برای سنگ‌شاخ و ارزیابی زمان شروع رواناب در هر یک از واحد‌های کاری با انجام پیمایش صحرا و اقدام به انتخاب سه نمونه گردید. سپس با استفاده از تکنیک‌های مورد نظر که
<table>
<thead>
<tr>
<th>ضریب</th>
<th>عمق رواناب (سانتی‌متر)</th>
<th>حجم رواناب (لیتر)</th>
<th>زمان شروع رواناب (دقیقه)</th>
<th>درصد سگیری‌های انجام‌شده</th>
<th>واحد کاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM 20 Ar 1</td>
<td>878</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Mu 20 me 1</td>
</tr>
<tr>
<td>EM 20 Ar 2</td>
<td>493</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>Mu 20 me 2</td>
</tr>
<tr>
<td>EM 20 Ar 3</td>
<td>205</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Mu 20 me 3</td>
</tr>
<tr>
<td>EM 5 Ar 1</td>
<td>900</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Mu 5 Ar 1</td>
</tr>
<tr>
<td>EM 5 Ar 2</td>
<td>368</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Mu 5 Ar 2</td>
</tr>
<tr>
<td>EM 5 Ar 3</td>
<td>369</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Mu 5 me 1</td>
</tr>
<tr>
<td>Mu 20 Ar 1</td>
<td>209</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Mu 20 me 1</td>
</tr>
<tr>
<td>Mu 20 Ar 2</td>
<td>333</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Mu 20 me 2</td>
</tr>
<tr>
<td>Mu 20 Ar 3</td>
<td>252</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Mu 20 me 3</td>
</tr>
<tr>
<td>Mu 20 me 1</td>
<td>231</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Mu 5 me 1</td>
</tr>
<tr>
<td>Mu 20 me 2</td>
<td>236</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Mu 5 me 2</td>
</tr>
<tr>
<td>Mu 20 me 3</td>
<td>223</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Mu 5 me 3</td>
</tr>
<tr>
<td>Mu 5 Ar 1</td>
<td>298</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Mu 5 Ar 1</td>
</tr>
<tr>
<td>Mu 5 Ar 2</td>
<td>288</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Mu 5 Ar 2</td>
</tr>
<tr>
<td>Mu 5 Ar 3</td>
<td>287</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Mu 5 Ar 3</td>
</tr>
<tr>
<td>Mu 5 me 1</td>
<td>298</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Mu 5 me 1</td>
</tr>
<tr>
<td>Mu 5 me 2</td>
<td>293</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Mu 5 me 2</td>
</tr>
<tr>
<td>Mu 5 me 3</td>
<td>292</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Mu 5 me 3</td>
</tr>
<tr>
<td>MU 20 Ar 1</td>
<td>378</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Mu 20 Ar 1</td>
</tr>
<tr>
<td>MU 20 Ar 2</td>
<td>372</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Mu 20 Ar 2</td>
</tr>
<tr>
<td>MU 20 Ar 3</td>
<td>371</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>Mu 20 Ar 3</td>
</tr>
<tr>
<td>OL 20 Ar 1</td>
<td>370</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>OL 20 Ar 1</td>
</tr>
<tr>
<td>OL 20 Ar 2</td>
<td>369</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>OL 20 Ar 2</td>
</tr>
<tr>
<td>OL 20 Ar 3</td>
<td>368</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>OL 20 Ar 3</td>
</tr>
<tr>
<td>OL 20 Me 1</td>
<td>367</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>OL 20 Me 1</td>
</tr>
<tr>
<td>OL 20 Me 2</td>
<td>366</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>OL 20 Me 2</td>
</tr>
<tr>
<td>OL 20 Me 3</td>
<td>365</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>OL 20 Me 3</td>
</tr>
<tr>
<td>OL 5 Ar 1</td>
<td>354</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>OL 5 Ar 1</td>
</tr>
<tr>
<td>OL 5 Ar 2</td>
<td>353</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>OL 5 Ar 2</td>
</tr>
<tr>
<td>OL 5 Ar 3</td>
<td>352</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>OL 5 Ar 3</td>
</tr>
<tr>
<td>OL 5 Me 1</td>
<td>351</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>OL 5 Me 1</td>
</tr>
<tr>
<td>OL 5 Me 2</td>
<td>350</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>OL 5 Me 2</td>
</tr>
<tr>
<td>OL 5 Me 3</td>
<td>349</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>OL 5 Me 3</td>
</tr>
<tr>
<td>OM 20 Ar 1</td>
<td>348</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>OM 20 Ar 1</td>
</tr>
<tr>
<td>OM 20 Ar 2</td>
<td>347</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>OM 20 Ar 2</td>
</tr>
<tr>
<td>OM 20 Ar 3</td>
<td>346</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>OM 20 Ar 3</td>
</tr>
<tr>
<td>OM 20 me 1</td>
<td>345</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>OM 20 me 1</td>
</tr>
<tr>
<td>OM 20 me 2</td>
<td>344</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>OM 20 me 2</td>
</tr>
<tr>
<td>OM 20 me 3</td>
<td>343</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>OM 20 me 3</td>
</tr>
<tr>
<td>OM 5 me 2</td>
<td>342</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>OM 5 me 2</td>
</tr>
</tbody>
</table>
بررسی آستانه شروع رواناب در واحدهای مارنی سازندگی زمین شناسی استان زنجان.

<table>
<thead>
<tr>
<th>واحدهای مارنی</th>
<th>شروع رواناب</th>
<th>حجم رواناب (کیلوالتر)</th>
<th>ضرب</th>
<th>موقعیت قند</th>
<th>دسترسی</th>
<th>واحد</th>
<th>کاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar Me 5 1020</td>
<td>74 12 15 3</td>
<td>15 12 7 15 3</td>
<td>1020</td>
<td>40</td>
<td>OM 5 me 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar Me 5 1247</td>
<td>9 8 8 8 1</td>
<td>8 8 8 8 1</td>
<td>1247</td>
<td>40</td>
<td>OM 5 Ar 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar Me 5 1174</td>
<td>7 7 7 7 1</td>
<td>7 7 7 7 1</td>
<td>1174</td>
<td>40</td>
<td>OM 5 Ar 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar Me 5 1157</td>
<td>8 5 8 5 1</td>
<td>8 5 8 5 1</td>
<td>1157</td>
<td>40</td>
<td>OM 5 Ar 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar Me 5 1020</td>
<td>12 15 16 1</td>
<td>12 15 16 1</td>
<td>1020</td>
<td>40</td>
<td>PL 20 Ar 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar Me 5 1020</td>
<td>11 11 11 1</td>
<td>11 11 11 1</td>
<td>1020</td>
<td>40</td>
<td>PL 20 Ar 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar Me 5 1020</td>
<td>1 1 1 1 1</td>
<td>1 1 1 1 1</td>
<td>1020</td>
<td>40</td>
<td>PL 20 Ar 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar Me 5 1016</td>
<td>1 1 1 1 1</td>
<td>1 1 1 1 1</td>
<td>1016</td>
<td>40</td>
<td>PL 20 Me 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar Me 5 1023</td>
<td>7 7 7 7 1</td>
<td>7 7 7 7 1</td>
<td>1023</td>
<td>40</td>
<td>PL 20 Me 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar Me 5 1046</td>
<td>7 7 7 7 1</td>
<td>7 7 7 7 1</td>
<td>1046</td>
<td>40</td>
<td>PL 20 Me 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar Me 5 1028</td>
<td>7 7 7 7 1</td>
<td>7 7 7 7 1</td>
<td>1028</td>
<td>40</td>
<td>PL 5 Ar 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar Me 5 1075</td>
<td>7 7 7 7 1</td>
<td>7 7 7 7 1</td>
<td>1075</td>
<td>40</td>
<td>PL 5 Ar 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar Me 5 1113</td>
<td>7 7 7 7 1</td>
<td>7 7 7 7 1</td>
<td>1113</td>
<td>40</td>
<td>PL 5 Ar 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar Me 5 1247</td>
<td>7 7 7 7 1</td>
<td>7 7 7 7 1</td>
<td>1247</td>
<td>40</td>
<td>PL 5 Me 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar Me 5 1255</td>
<td>7 7 7 7 1</td>
<td>7 7 7 7 1</td>
<td>1255</td>
<td>40</td>
<td>PL 5 Me 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ar Me 5 1020</td>
<td>15 18 18 1</td>
<td>15 18 18 1</td>
<td>1020</td>
<td>40</td>
<td>PL 5 Me 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شکل 2- مقایسه زمان شروع رواناب تولیدی در واحدهای کاری.

ویژین نفوذی‌پذیری خاک و در این بررسی واحدهای مارنی می‌باشد. برای بررسی وضعیت یکی دیگر از عوامل موثر زمان شروع رواناب به اندیشه‌گیری میزان نفوذ آب در هریک از این واحدهای مارنی می‌باشد.
آماری در زمان شروع رواناب
خصوصیات فیزیکی مورد از نظر واحدهای
مارک اصلی زمان به آستنی شروع رواناب، عمق
نفوذ آب، ضریب رواناب و درصد سنتربه
می‌باشد (شکل 8). که در ادامه تایین و رویت
موجود بین این عوامل فیزیکی و زمان شروع
رواناب واحدهای کاری مورد بررسی قرار
می‌گیرند.

بررسی تأثیر خصوصیات فیزیکی واحدهای

واضحیت زمان آستنی شروع رواناب

نام واحدهای ماری

نوعی متفاوت در هم‌نیا رواناب بر روی
واحدهای مارک و زمان شروع این رواناب اقدام
به تسریع نمودار ارائه شده در شکل 9 گردید.
براساس این نمودار رابطه بین این دو یک رابطه
غیرخطی با ردیس کاهشی است. معادله
دیگرین این دو از نوع معادله درجه دو با
ضریب هم‌نیا حداکثر 0.86 می‌باشد.

رابطه بین رواناب و زمان شروع آن
برای بررسی رابطه بین رواناب تولیدی
واحدهای مارک و زمان شروع این رواناب اقدام
به تسریع نمودار ارائه شده در شکل 9 گردید.
براساس این نمودار رابطه بین این دو یک رابطه
غیرخطی با رشد کاهشی است. معادله
دیگرین این دو از نوع معادله درجه دو با
ضریب هم‌نیا حداکثر 0.86 می‌باشد.

بطوریکه با افزایش زمان شروع رواناب میزان با
است که براساس شکل (10) که نشاندهنده
منحنی رابطه بین ضریب رواناب با زمان شروع
رواناب می‌باشد. رابطه و شکل منحنی کاملا
مشابه رابطه و شکل منحنی بین رواناب و زمان
شروع رواناب است. لذا توضیحات ارائه شده در
این بخش شامل این منحنی نیز می‌باشد.

\[y = 0.0027x^2 + 0.0919x + 0.7933 \]
\[R^2 = 0.8369 \]

\[R^2 = 0.858 \]

شکل 9 - بررسی رابطه بین زمان شروع رواناب واحدهای کاری با حجم رواناب.

میزان عمق نفوذ آب در داخل واحدهای مارنی
مورد بررسی افزایش می‌یابد. در این منحنی با
توجه به وضعیت زمان شروع رواناب و میزان
عمق نفوذ آب در خاک واحدهای مارنی امکان
تفکیک این واحدها به گروه‌یا گروه‌های مجزا
به نحوی که روی منحنی نمایش داده شده
است وجود دارد.

\[y = 0.0875x^2 + 3.0431x + 27.148 \]

\[R^2 = 0.858 \]

شکل 10 - بررسی رابطه بین زمان شروع رواناب واحدهای کاری با ضریب رواناب.

رابطه بین زمان شروع رواناب با عمق نفوذ آب
با توجه به شکل 11 که نشاندهنده منحنی
رابطه زمان شروع رواناب با عمق نفوذ آب در
خاک است. معاونه بین این دو از نوع معاونه
رگرسیونی داره بروم با ضریب همبستگی
0.75/و از نوع شرطی با رابطه مستقیم است.
بباید دیگر با افزایش زمان شروع رواناب
بررسی تأثیر شیب بر زمان شروع رواناب

همانطوری که در بخش روش تحقیق توضیح داده شد برای تعیین واحدهای کاری دو رده شیب 5% و 20% بعنوان یکی از لایه‌ها انتخاب با دو معیار دیگر یعنی اقلیم و واحدهای انتخاب شده‌اند.

![عکس رابطه بین زمان شروع رواناب با نفوذ]

شکل 11- برسی رابطه بین زمان شروع رواناب تولیدی و واحدهای کاری با عمق نفوذ آب.

در دو اقلیم خشک و مرطوب از واحدهای کاری مورد بررسی ارائه شده است. براساس این منحنی‌ها روند تغییرات زمان شروع رواناب در هر دو اقلیم مشابه و تا حدودی زیادی نزدیک بهم می‌باشد. دامنه نوسانات این صفت در هر دو اقلیم محدود بوده و تغییرات اختلاف معنی‌داری را نشان نمی‌دهد. اما با دقت در منحنی‌ها می‌توان گفت در واحدهای مارن سرزمین بالایی (OM) و واحدهای مارن قوم (Mu) مرطوب زمان شروع رواناب نسبت به اقلیم خشک دارای مقدار بیشتری می‌باشد. اما واحد مارن پلوسون (PL) زمان شروع رواناب در اقلیم خشک بیشتر از اقلیم مرطوب است.

در شکل (12) وضعیت زمان شروع رواناب واحدهای کاری در دو شیب انتخابی نشان داده شده با دقت در این منحنی‌ها مشخص می‌شود که در هر دو شیب روند تغییرات در تمام واحدهای کاری به جز واحد مارن مشابه بوده و تفاوت مشخصی و معنی‌داری نمی‌دهد. بیان کردگی شیب تأثیر بر تغییرات زمان شروع رواناب در این واحد‌ها ندارد. اما واحد مارن PLe که واحد کاری مارن پلوسون در اقلیم مرطوب است تفاوت قابل توجه و مشخص که باید علت آن مورد بررسی قرار گیرد.

بررسی تأثیر اقلیم بر زمان شروع رواناب

در شکل (13) تغییرات زمان شروع رواناب
تجزیه و تحلیل آماری داده ها

برای بررسی دقیق و آماری روابط بین عوامل مؤثر از لایه‌های اطلاعاتی شرکت کننده در تعریف واحدهای کاری واحدهای مارنی مورد استفاده SAS افزار بررسی از توانایی‌های نرم افزار استفاده گردید. بدین منظور داده‌های بدست امده از...
واحدهای مارنی و شیب می‌باشد که طبق بحث صورت گرفته تاثیر این دو به تنهایی نیز معنی‌دار نبود و لذا در حالت ترکیب با اقلیم باعث تثایر معنی‌دار بار این خصوصیت شدید است.

براساس نتایج بدست آمده اثر واحدهای مارنی و شیب روی زمان شروع رواناب در سطح 1 و 5٪ معنی‌دار است. بطوریکه در واحدهای مارنی مختلف و شیب‌هایی انتخابی میزان اختلاف زمان شروع رواناب با یکدیگر تفاوت مشخص و معنی‌داری دارند. در حالیکه اثر اقلیم بر این صفت معنی‌دار نمی‌باشد. معنی‌زمان شروع رواناب در دو اقلیم انتخابی با یکدیگر اختلاف مشخص و معنی‌داری ندارد. هرچند وجود اختلاف احتمال‌بندی‌های می‌باشد ولی این اختلاف دارای یک تفاوت و رابط مشخص و معنی‌داری نیست. اما تاثیر حالت‌های دو گانه شیب × واحد مارنی، اقلیم × واحد مارنی و اقلیم × شیب همگی معنی‌دار می‌باشند. در دو حالت آخر تاثیر ترکیب واحدهای مارنی و اقلیم و شیب با اقلیم در زمان شروع رواناب معنی‌داری ندارد.

حالیکه در حالت اقلیم تنها این تفاوت معنی‌دار نبوده و در حالت اقلیم معنی‌دار دارای نتایج مشاهده شده است.
جدول ۳- مقایسه میانگین مقادیر خصوصیات مورد بررسی در واحدهای مارنی استان زنجان به روش دانکن

<table>
<thead>
<tr>
<th>نام متغیر</th>
<th>واحد مولکولی</th>
<th>واحد پایین (Mu)</th>
<th>واحد پایین (PL)</th>
<th>واحد پایین (OM)</th>
<th>واحد پایین (OL)</th>
<th>واحد پایین (EM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن شروع روغناب</td>
<td>23/3</td>
<td>28/9</td>
<td>28/7</td>
<td>38/8</td>
<td>41/9</td>
<td>52/2</td>
</tr>
<tr>
<td>حجم روغناب</td>
<td>30/0</td>
<td>30/0</td>
<td>30/0</td>
<td>30/0</td>
<td>30/0</td>
<td>30/0</td>
</tr>
<tr>
<td>ضرب روغناب</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
<td>0/3</td>
</tr>
</tbody>
</table>

براساس نتایج بدست آمده از این بررسی، می توان گفت واحدهای مارنی را با توجه به خصوصیات زمان شروع روغناب در آنها به سه گروه قبل تفکیک می باشند. بطوریکه واحد مارن پلیپسین (PL) و واحد مارنی قم (OM) کدام به تنهایی یک گروه و واحدهای مارنی قم پلیپسین (OL) و مارنی (EM) اتوسین با هم در یک گروه قرار می گیرند.

جدول ۴- مقایسه میانگین مقادیر خصوصیات مورد بررسی واحدهای مارنی استان زنجان در شیبها و اقلیمی به روش دانکن

<table>
<thead>
<tr>
<th>نام متغیر</th>
<th>اقلیم مطراب</th>
<th>اقلیم شکن</th>
<th>شیب %</th>
<th>شبب %</th>
<th>شیب %</th>
<th>شبب %</th>
</tr>
</thead>
<tbody>
<tr>
<td>حجم روغناب</td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
</tr>
<tr>
<td>ضرب روغناب</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
</tr>
</tbody>
</table>

براساس نتایج بدست آمده از این بررسی در حدود ۴۴۳۰ کیلوتربی میزان سطح استان که معادل ۲۰ درصد مساحت کل استان است تحت اشغال اراضی مارنی می باشد. در شکل ۵ نشان می دهد در بین واحدهای مارنی نیاز (Plm) و واحد مارنی طبقات قرم بیای (Mur) بیش از ۸۵ درصد از سطح واحدهای مارنی را بوشیش می دهد.
تغییرات زمان شروع رواناب نیز صادق است. در حالیکه متقابل مستقل اقلیم بصورت تنبها بعنوان تاثیر معنی‌دار بر تغییرات زمان شروع رواناب ندارد. یعنی در دو اقلیم سیاه و مرطوب تفاوت معنی‌داری از نظر زمان شروع رواناب دیده نمی‌شود. پس اقلیم به تنها یک عامل تأثیر گذار مهم و معنی‌دار بین زمان شروع رواناب باشد. اما در حالیکه با دو عامل دیگر بینی و احتمال مانند و شب به بعنوان یک مجموعه با تأثیر گذار معنی‌دار مطرح می‌شود. پس بر این اساس می‌توان گفت معنی‌دارگردان بر تغییرات زمان شروع رواناب به مصدر و عوامل اصلی و تاثیر گذار بر تغییرات زمان شروع رواناب بوده و بالعکس. وجود اختلاف و تفاوت معنی‌دار در زمان شروع رواناب و احتمال کاری یکی دلیل تأثیر این دو خصوصیت و احتمال کاری بوده و از طریق کنترل یا تغییر این دو متغیر و احتمال می‌توان نسبت به اعمال تغییر معنی‌دار در زمان شروع رواناب و احتمال کاری اقدام نمود.

براساس نتایج بدست آمده از یک تحقیق در دو بخش صورت گرفته است. در یک کنونه به بررسی تاثیر عوامل سه گانه شرکت کننده در تعریف و احتمال کاری معنی‌دار احتمال مانند و شب به اقلیم بر خصوصیات فیزیکی اندازه گیری شده هریک از احتمالات کاری شامل زمان شروع رواناب، حجم رواناب تولیدی و ضریب رواناب می‌باشد. یک اساس اثر احتمال مانند و شب بر تغییرات زمان شروع رواناب کاملاً معنی‌دار می‌باشد. بطوریکه در احتمال مانند مختلف و در شبیه‌ای متفاوت اختلاف معنی‌دار بین زمان شروع رواناب در این متغیرهای مستقل دیده می‌شود. این اختلاف معنی‌دار در حالت‌های دو گانه و سه گانه حاصل از ترکیب متغیرهای مستقل و احتمال مانند، شب و اقلیم از نظر تاثیر بر
دیدار در محیط افزایش ضربان رواناب به افزایش سهیلی باشد. به این ترتیب می‌توان گفت که تأثیر در نظر گرفتن ضربان رواناب برای چک کاربرد صحیح نیسته و باید متناسب با شیب تغییر داده شود. کارنیلی (11) در ۴ حوزه در آزمون‌های آمریکا به شیب سازی رواناب روزانه مشاهده کرد که استانیه شرایط رواناب تابعی از متسوچیه بافت خاک حس از که خاک‌های رسی کم‌ترین استوانه و خاک‌های شنی بالاترین استوانه رواناب را دارند و نتیجه گرفته که در حوزه‌های جنوب غربی آمریکا مقدار رطوبت به آب خاک اثر محسوسی در تولید رواناب دارد. بوسیله و شیب (15) از بارش سالانه و چک در بیل خاک برای شیب‌های سوزنی تغییر بر روی رواناب و آب پایه در صورت وجود آمریکا، افزایش خاک استفاده از کربن. نتایج این بررسی نشان داد که استانیه شرایط رواناب بستگی به اقلیم دارد و مقدار آب‌بردار در مناطق نیمه خشک بیشتر است. مناطق نیمه شرایط مربوط است بر این اساس اگر نتیجه گیری کردن ناکافی رواناب بسته به اقلیم در فرق می‌کند و مقدار آن در مناطق نیمه خشک بیش از مناطق مربوط فاصله است. مارینوی و همکاران (13) در مناطق نیمه‌خشک مدیریت‌های اسبابی ناحیه تولید و عوامل موثر بر رواناب را در حوزه‌های کوچک بررسی کرده‌اند. نتایج این بررسی نشان داد که خاک‌های رنگ‌بافت به نفع زیست‌کاری در مواد عالی کم، یک گروه قرار می‌گیرند و این روش تأثیر در زمان شرایط رواناب با همدغیف اختلاف معمولی دارند که با بدلیل داشتن تفاوت در خصوصیات فزاینده - شیمیایی، آنهاست. برای تأثیر شیب و اقلیم بر زمان شرایط رواناب بررسی شده در آزمون‌های قرار گرفته نشان دهندن معمولی دار بودن تأثیر این دو بر این خصوصیات می‌باشد. برای زمان شرایط رواناب واحدهای مارنی در شیب‌های ۰/۵ و ۲/۰ و اقلیم خشک و سرعت به هم‌بستگی تفاوت محسوس و معنی‌داری بوده و این در واقع نشان‌دهنده موثری‌بودن شیب و اقلیم در این صفات می‌باشد.

An Investigation of Factors Affecting Runoff Generation in Zanjan Province Marl Units of Formations Geological using Simulation Rainfall

P. Abdinejad¹, S. Fiznia², H. Pyrowan³, F. Fayazi⁴ and T. Shabani⁵

Abstract

Marl unit include of about 4438 km sq. (some %20) of total surface area of Zanjan province. A study on the relationship among the runoff threshold, volume and run-off coefficient at Marl unit shows a quadratic regression equation to express the variations. Statistical data analysis shows the significant effects of the Marl units and slope on the runoff threshold (p<0.05). While, there is no significant effect of the climate on it. Marl unit can be classified in to three groups, based on the runoff threshold, so that Marls of Pliocene (PL) and Qom (OM) are in a separate class and upper-red (Mu), lower red and Eosen (EM) Marl units are in a unique group. These 3 groups differ significantly of view point of the runoff threshold resulted by the physico-chemical differences among them. So that the more silt content, the more rapid runoff threshold, because of lack or scarcity of water absorption capacity in these units. Investigation suggests that combined effects of slop and climate are significant on the runoff threshold.

Keywords: Marl units, Runoff threshold, Runoff coefficient, Rainfall Simulator, Zanjan Province