چکیده

آمار موجود در سراسر دنیا حکایت از فزونی فراوانی و شدت وقوع حوادث سیل دارد. شناسایی مناطق مؤثر بر سیلاب خروجی از حوزه، در سطح آن، از جمله اقدامات پایه‌ای و مهم در کنترل سیل و کاهش خسارت ناشی از آن می‌باشد. تحقیق حاضر به اولویت بندی زیرخوشه‌های اصلی حوزه آبخیز رودک واقع در استان تهران با استفاده از مدل شیب‌سازی HEC-HMS پرداخته است. پس از تعیین حوزه به تعدادی زیرخوشه، با تهیه و تکمیل اطلاعات مورد نیاز در مدل سیستم اطلاعات جغرافیایی، انتخاب روش شهرهای منحنی در بخش تلفات، مهار شیب‌سازی HEC-HMS و سیلابی ترکیبی هیدرولوژیکی در بخش انتقال و روش ماسکینگام جهت روندی سیل، با استفاده از روش حذف متوالی انفرادی زیرخوشه‌ها، نقش یکی‌ای زیرخوشه‌ها در هیدرولوگی سیل خروجی تعیین گردیده و بر اساس آن اولویت‌بندی صورت گرفت. در این تحقیق ابتدا بین سیلاب و مساحت زیرخوشه‌ها نیز بررسی شد. نتایج تحقیق نشان داد که زیرخوشه‌های کوچک نسبت به سایر زیرخوشه‌ها تأثیر بیشتری بر سیلاب خروجی از حوزه دارند. همچنین نتایج نشان می‌دهد میزان مشارکت زیرخوشه‌ها در سیل خروجی، با مساحت آنها ارتباط مستقیمی ندارد.

واژه‌های کلیدی: اولویت‌بندی زیرخوشه‌ها، شیب‌سازی سیل، مدل GIS، HEC-HMS, اولویت‌بندی، استان تهران، سیستم اطلاعات جغرافیایی (GIS)}
با استفاده از داده‌های پیش‌بینی شده با NEXRD Level III
استفاده از GIS در حوزه‌ای برای رودخانه سن آنتونیو اقدام نمودند. این‌سان مدال را در یک شبکه گیلولیت ۵۴ کیلومتری اجرا نموده و برای شیب‌های مناسب دی متری زیرخورشین حوزه، قابلیت را به صورت دستی کالیبره کردن و توانستند با این دی متری کالیبره شده، به تولید پی‌گویی سیلات و اقدام کنند و محدوده سیل گیر مخصوص نمایند (۰.۲ مک سیال و آبک، با استفاده از مدل به پیش بینی کالیبر اراضی در سال‌های ۲۰۱۵، ۲۰۱۶ و ۲۰۱۷ در حوزه کیاناتیس و واسانگی پرداخته‌اند. این‌سان با استفاده از نهایی HEC-GEHOHM GIS و ناحیه حوزه و در محیط خصوصیات اراضی حوزه و نام‌بندی سایر پارامترهای مورد نیاز مدل در استخراج
نمونه و از روی چگونگی جهت تغییر حجم
روان‌های و انتقال، از روی مسکن‌های کانتره نقطه ای جهت روندیاپی کانال استفاده کرده‌اند. این‌سان با نورنگر رفتار اولیه به عنوان پارامتر حساسیت و کالیبره مدل به روش میانگین‌های متغیر می‌باشد، به این نهایی رسیدند که مدل هیدرولوژیکی
HEC-HMS
پیش بینی الگوهای مختلف کاربری اراضی که
به ویژه در طرح‌های شهری و کاهش
خسارات سیل در حوزه‌های شهری از اهمیت
پژوهشگاه‌شناسی با بکارگیری مدل
HEC-HMS
مشخص و به عنوان متغیرهای تابع در
تجزیه و تحلیل استفاده شدند (۱۰). اما
استفاده از مدل‌های شبیه‌سازی افرود
- رووان‌های از جمله امکاناتی است که در چند دهه اخیر
در دنیای رابطه‌های است. این مدل‌ها در مطالعات
سیل نیز کاربرد فراوانی دارند. نیل و همکاران،
زیرخوده، تعبیر خاصی از GIS و HEC-HMS استفاده از فرم هر گونه، محاسبه هیدرودینامیکی سیل مناطق
با پارامترهای طراحی برای هر یک از زیرخوده‌ها. حذف متوالی زیرخوده‌ها به هر بار
ایجاد مدل، میزان تأثیر هریک از زیرخوده‌ها
را در تولید سیل خروجی در حوزه آبخیز
دمواند نشان داده اینجا و آنها را اولویت بندی نمود.
(6) این نتایج حاکی از نشان می‌دهد مکانی
زیرخوده‌ها در سیل خروجی از حوزه دارد. به
با تفکیک حوزه آبخیز گرایش‌گذاری شده است
گسترسه ۴۰ زیرخوده نقش زیرخوده‌ها در
سیل خروجی از حوزه کل را با استفاده از مدل
بررسی نمود. یک بالاتر از مدل HEC-HMS
رودخانه بارندگی و سیل و به یک گروه روش
شماره منحصراً بهبود تولید بارش- رواناب و
ماسکینگان کاری ۸ نقطه‌ای در روندیابی سیل،
نتیجه گرفته که علاوه بر مساحت، موقعیت
مکانی و هم زمانی دیپ اوج هر زیرخوده با
سایرین نیز در مشترکت نهایی آنها در دیپ اوج
کل حوزه نقش دارد (11). این نتایج، با استفاده از
به HEC-HMS مدل شبیه‌سازی اولویت بندی مکانی زیرخوده‌های آبخیز
کوشش ایجاد خراسان رضوی پدیده. روی
اکنون از تعبیر اطلاعات مورد نیاز، با روش
شبیه‌سازی SCS روندیابی ماسکینگان و
استفاده از پایامدهای تلفات اولیه، شماره
منحصراً و زمان تأخیر و روش جدید افزایش
زیرخوده‌ها موجود و را اولویت بندی نمود.
نتایج نشان داد که از محل خروجی به سمت

مواد و روش‌ها

منطقه مورد مطالعه

حوزه آبخیز رودخانه به ۱۶°۴۲′۳۰″ تا
۵۱°۵۱′۵۰″ طول شرقی و ۴۸°۲۹′۳۵″ تا
۱۸°۳۰′۵۰″ عرض شمال در شمال شرق
تهران واقع گردیده است. میانگین بارش سالانه
منطقه ۶۱/۱۴ میلی‌متر، در یک دوره
ساله ۱۳۵۵ (۵۵-۵۶) است.

HEC-HMS
HEC-HMSSCS
HEC-HMS
HEC-GEOHMS

پتانسیل تولید سیل در حوزه معرف کمیتیان
را بررسی نموده است. نتایج روندیابی سیل در
آب‌هایی داشت که میزان مشترکت
زیرخوده‌ها در سیل خروجی مناسب با دیپ
از اوج زیرخوده‌ها بوده‌اند، لزوماً زیرخوده‌هایی که
دبی اوج بیشتری دارند سیل خیزتر نیستند و
عوامل روندیابی و موقعیت مکانی زیرخوده‌ها
نیز در این امر نقش دارند (11). بر مبنای
مطالعات سیلاب، علاوه
بر تعبیه سهم سیل آنها در خروجی، بررسی
موقعیت مکانی زیرخوده در سطح حوزه نیز از
جمله عوامل کلیدی در تحقیقات محاسبه
می‌شود.

این نتایج نشان داد که از محل خروجی به سمت
مساحت حوزه ۴۳۹/۴ کیلومتر مربع، حداکثر و حداکثر ارتفاع به ترتیب ۴۷۲۹ و ۱۷۲۹ متر

شکل ۱- موقعیت چهارفاطی حوزه آبخیز روک نسبت به کشور و استان تهران.

اداره کل آب استان تهران تهیه و کلیه وقایع تبیت شده بارش در داخل و خارج و تمامی سیالی‌ها در حوزه بررسی گردید و از این نگاه، تعداد ۵ رودخانه بارش و سیلاب هم‌زمان انتخاب شد. همچنین وضعیت کاربری اراضی با استفاده از نقشه تهیه شده از تصویر ماهواره Landsat ETM در سال ۲۰۰۲ تعیین گردید. هیبردپردازی حوزه با استفاده از نقشه واحدهای اراضی تهیه شده توسط سازمان جهاد کشاورزی بررسی و نهایتاً میزان متوسط وزنی CN در سطح حوزه و هر یک از زیرحوزه‌ها در سیستم اطلاعات جغرافیایی محاسبه شد. تعیین زیرحوزه‌ها و محاسبه خصوصیات هیبردپردازی، هر یک نیز با HEC-GEOHMS استفاده از داده‌های HEC-HMS و HEC-1 مورد بررسی قرار گرفت. در پایان این پژوهش، مدل‌های HEC-HMS و HEC-1 که توانسته‌اند تأثیرات مختلفی را به‌کلیه بیماری‌ها، و عوامل بارش‌های مختلف را در حوزه و هر یک از آن‌ها به‌کاربردی نشان دهند.

روش تحقیق

در این تحقیق، ابتدا اطلاعات مورد نیاز شامل داده‌های بارش و سیلاب مشاهده‌ای از منطقه از مرکز تحقیقات منابع آب (نیا) و
در قسمت های مربوطه توضیح داده خواهد شد. جهت اولویت بندی زیرخوشه ها نیز از روش حذف متوالی انرژی زیرخوشه ها استفاده شد (۴). جدول ۱ برخی خصوصیات فیزیوگرافیکی محاسباتی در سطح زیرخوشه ها را نشان می دهد.

جدول ۱- برخی خصوصیات فیزیوگرافیکی زیرخوشه ها

<table>
<thead>
<tr>
<th>جهت ثبت دخیره به دبی</th>
<th>مساحت (کیلومتر مربع)</th>
<th>ارتفاع متوسط (متر)</th>
<th>طول ابعاد اصلی (روش)</th>
<th>شیب متوسط آب‌های اصلی (درصد)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲/۹۵</td>
<td>۹/۶۲</td>
<td>۸/۹۱</td>
<td>۱۲/۸۸</td>
<td>۰/۲۹</td>
</tr>
<tr>
<td>۲/۹۷</td>
<td>۸/۹۱</td>
<td>۱۲/۸۸</td>
<td>۰/۲۹</td>
<td></td>
</tr>
<tr>
<td>۱/۸۱</td>
<td>۱۲/۸۸</td>
<td>۰/۲۹</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[X = \frac{S^{\frac{1}{2}}}{NP^{\frac{1}{2}}} \]

که به‌طور کلی مقدار در حوزه‌های کوهستانی معمولاً از ۲/۲۰ لحاظ می‌شود (۱۳).

جهت تعیین این مقدار در حوزه آبخیز رودک از رابطه زیر استفاده می‌شود:

\[K = \frac{L}{V} \]

۱- Successive Single Subwatersheds Elimination
رودرک در این مرحله با استفاده از تابع خطای مربع میانگین پیک وزنی (Peak-Weighted Root Mean Square Error) انتخاب روش جستجوی Nelder and Mead و هیبرید گراف واحد SCS برای تبدیل پارامترهای عضو اولیه (داده‌ها) شماره مناسبی از جدول ۴ استفاده از روش تاخیر (Tlag) به عنوان هیدروگراف سیل مشاهداتی و واسنجی شده در این واقعه را نشان می‌دهد.

جدول ۳ مجموعه واقع منتبه سیلان و پارش متناهی در حوزه آبخیز رودک

<table>
<thead>
<tr>
<th>تاریخ مسیله</th>
<th>۱۳۸۲/۱/۱۶</th>
<th>۱۳۸۳/۱/۱۶</th>
<th>۱۳۸۴/۱/۱۶</th>
<th>۱۳۸۵/۱/۱۶</th>
<th>۱۳۸۶/۱/۱۶</th>
</tr>
</thead>
<tbody>
<tr>
<td>تاریخ بارش</td>
<td>۱۳۸۲/۱/۱۶</td>
<td>۱۳۸۳/۱/۱۶</td>
<td>۱۳۸۴/۱/۱۶</td>
<td>۱۳۸۵/۱/۱۶</td>
<td>۱۳۸۶/۱/۱۶</td>
</tr>
</tbody>
</table>

اعتزازیابی مدل

برای استفاده از مدل شیبی سازی در یک سیستم باز اعترابیابی مدل در حوزه با موقعیت صورت پذیرد. در این تحقیق با استفاده از روش Simple Split-Sample محاسبات آن بررسی گردید. جدول ۹ نتیجه محاسبات عددهای پارامترهای در مرحله اعتباریابی توسط مدل را نشان می‌دهد. مقایسه مقدارهای اعتباریابی مدل با مشاهداتی (جدول ۴) و نتایج اینک اعداد نشان دهنده ارزیابی مناسب مدل در طول این مرحله و در نتیجه مراحل دیگر است (۱۲).
در شکل ۲ مشاهده شده است که انتخاب و آلگوی بارش در دوره بارش‌های ۲۵ و ۱۰۰ میلی‌متری به بارش‌های دوره بارش‌های مورد نظر، به دست آمد.

جدول ۴ - مقادیر شماره منحنی، تلفات اولیه مشاهداتی در هر یک از زیرخوشه‌ها

<table>
<thead>
<tr>
<th>پارامترها</th>
<th>CN</th>
<th>زیر خوشه</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۳</td>
<td>۶۹</td>
<td>امامه</td>
<td>۱</td>
</tr>
<tr>
<td>۲۱</td>
<td>۷۱</td>
<td>اهار</td>
<td>۲</td>
</tr>
<tr>
<td>۱۹۷</td>
<td>۷۲</td>
<td>شمشک</td>
<td>۳</td>
</tr>
<tr>
<td>۱۸۸</td>
<td>۷۶</td>
<td>کلوکان</td>
<td>۴</td>
</tr>
<tr>
<td>۱۸</td>
<td>۷۴</td>
<td>گرم‌مادر</td>
<td>۵</td>
</tr>
</tbody>
</table>

جدول ۵ - مقادیر شماره منحنی، تلفات اولیه و استنجی شده در هر یک از زیرخوشه‌ها در روز‌های ۱۳۵۲/۱۳۵۴/۱۳۵۵

<table>
<thead>
<tr>
<th>پارامترها</th>
<th>CN</th>
<th>زیر خوشه</th>
<th>رنگ</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۶</td>
<td>۷۶</td>
<td>امامه</td>
<td>۱</td>
</tr>
<tr>
<td>۱۹</td>
<td>۷۳</td>
<td>اهار</td>
<td>۲</td>
</tr>
<tr>
<td>۲۷</td>
<td>۶۵</td>
<td>شمشک</td>
<td>۳</td>
</tr>
<tr>
<td>۱۷</td>
<td>۷۵</td>
<td>کلوکان</td>
<td>۴</td>
</tr>
<tr>
<td>۱۴</td>
<td>۷۶</td>
<td>گرم‌مادر</td>
<td>۵</td>
</tr>
</tbody>
</table>

جدول ۶ - مقادیر شماره منحنی، تلفات اولیه و استنجی شده در هر یک از زیرخوشه‌ها در روز‌های ۱۳۵۶/۱۳۵۷/۱۳۵۸/۱۳۵۹
جدول 7 - مقادیر شماره منحني تلفات اولیه و استنگی شده در هر یک از زیرجزوه‌ها در روزهای 1353/12/16

<table>
<thead>
<tr>
<th>پرامتراها</th>
<th>زیرجزوه</th>
<th>رنگ</th>
<th>اسمشک</th>
<th>کلمکان</th>
<th>گوباندر</th>
</tr>
</thead>
<tbody>
<tr>
<td>la (mm)</td>
<td>CN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>79</td>
<td>1</td>
<td>امامه</td>
<td>امامه</td>
<td>امامه</td>
</tr>
<tr>
<td>20</td>
<td>76</td>
<td>2</td>
<td>اهار</td>
<td>اهار</td>
<td>اهار</td>
</tr>
<tr>
<td>21</td>
<td>78</td>
<td>3</td>
<td>شمشک</td>
<td>شمشک</td>
<td>شمشک</td>
</tr>
<tr>
<td>17</td>
<td>81</td>
<td>4</td>
<td>کلمکان</td>
<td>کلمکان</td>
<td>کلمکان</td>
</tr>
<tr>
<td>33</td>
<td>80</td>
<td>5</td>
<td>گوباندر</td>
<td>گوباندر</td>
<td>گوباندر</td>
</tr>
</tbody>
</table>

جدول 8 - مقادیر شماره منحني تلفات اولیه و استنگی شده در هر یک از زیرجزوه‌ها در روزهای 1376/11/16

<table>
<thead>
<tr>
<th>پرامتراها</th>
<th>زیرجزوه</th>
<th>رنگ</th>
<th>اسمشک</th>
<th>کلمکان</th>
<th>گوباندر</th>
</tr>
</thead>
<tbody>
<tr>
<td>la (mm)</td>
<td>CN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>76</td>
<td>1</td>
<td>امامه</td>
<td>امامه</td>
<td>امامه</td>
</tr>
<tr>
<td>30</td>
<td>77</td>
<td>2</td>
<td>اهار</td>
<td>اهار</td>
<td>اهار</td>
</tr>
<tr>
<td>15</td>
<td>78</td>
<td>3</td>
<td>شمشک</td>
<td>شمشک</td>
<td>شمشک</td>
</tr>
<tr>
<td>11</td>
<td>81/15</td>
<td>4</td>
<td>کلمکان</td>
<td>کلمکان</td>
<td>کلمکان</td>
</tr>
<tr>
<td>17</td>
<td>79</td>
<td>5</td>
<td>گوباندر</td>
<td>گوباندر</td>
<td>گوباندر</td>
</tr>
</tbody>
</table>

جدول 9 - مقادیر شماره منحني تلفات اولیه و استنگی شده در هر یک از زیرجزوه‌ها در روزهای 1382/11/6

<table>
<thead>
<tr>
<th>پرامتراها</th>
<th>زیرجزوه</th>
<th>رنگ</th>
<th>اسمشک</th>
<th>کلمکان</th>
<th>گوباندر</th>
</tr>
</thead>
<tbody>
<tr>
<td>la (mm)</td>
<td>CN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20/5</td>
<td>70</td>
<td>1</td>
<td>امامه</td>
<td>امامه</td>
<td>امامه</td>
</tr>
<tr>
<td>24/8</td>
<td>68/5</td>
<td>2</td>
<td>اهار</td>
<td>اهار</td>
<td>اهار</td>
</tr>
<tr>
<td>33/4</td>
<td>65/3</td>
<td>3</td>
<td>شمشک</td>
<td>شمشک</td>
<td>شمشک</td>
</tr>
<tr>
<td>34</td>
<td>69</td>
<td>4</td>
<td>کلمکان</td>
<td>کلمکان</td>
<td>کلمکان</td>
</tr>
<tr>
<td>42/3</td>
<td>72/8</td>
<td>5</td>
<td>گوباندر</td>
<td>گوباندر</td>
<td>گوباندر</td>
</tr>
</tbody>
</table>

براساس تأثیر واحد سطح زیرجزوه‌ها در سیل خروجی از حوزه انجام شد. عموماً مساحت های بزرگتر در سطح حوزه دیب بیشتری تولید می‌کند. اما در بحث تعبین زیرجزوه مؤثرتر در دبی خروجی، بهتر است اثر بزرگی و کوچکی مساحت زیرجزوه‌ها حذف شود تا بتوانی قضاوت صحیح از تری داشت. جدول 11 مجموعه این مراحل را در دوره بازگشت 25 ساله نشان می‌دهد. شکل 3 اولویت بندی زیرجزوه‌ها براساس سهم مشارکت واحد سطح هر زیرجزوه در دبی اوج خروجی در دوره بازگشت 25 ساله‌ها به عنوان در آغاز مدل با حضور کلیه زیرجزوه‌ها و در نظر گرفتند نظر اجرا و دبی اوج و حجم سیلاب در یک‌پایگان آنها و همچنین در خروجی حوزه کل تعیین گردید. سپس در هر بار اجرای هیدرولوژی سیل‌یکی از زیرجزوه‌ها از روند دیگر سیل حوزه حذف و دبی اوج خروجی حوزه کل بدون در نظر گرفتن دیب آن زیرجزوه‌شیب سازی شد. این کار در روزهای حاکم شده در دوره بازگشت های مختلف نیز اجرا شد. بدين ترتیب تأثیر یک‌پایگان زیرجزوه‌ها محاسبه و سپس جهت حذف اثر مساحت محاسبات
نمونه نشان می‌دهد این اولویت بندی در تمام دوره‌های بارگذاری یکسان به دست آمد. همچنین همانطور که در جدول مشاهده می‌شود زیرگوشه‌ای که مساحت بیشتری دارد الزاماً مؤثرتر نیست.

تا خروجی و مشارکت دیب در واحد سطح آن زیر‌گوشه بر دبی اوج خروجی برای بیان تأثیر موقعیت مکانی زیر‌گوشه در سیل خروجی، ضمن روند‌بایی

جدول 10- دبی اوج و حجم سیلاب در مراحل قبل و بعد از واستنی

<table>
<thead>
<tr>
<th>تاریخ</th>
<th>دبی اوج (م³/س)</th>
<th>حجم (م³)</th>
<th>دبی اوج (م³/س)</th>
<th>حجم (م³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4</td>
<td>1755</td>
<td>42/4</td>
<td>33/6</td>
<td>1765</td>
</tr>
<tr>
<td>2/3</td>
<td>1871</td>
<td>57/0/3</td>
<td>5</td>
<td>14/7</td>
</tr>
<tr>
<td>5</td>
<td>10/7</td>
<td>23/2</td>
<td>53</td>
<td>14/7</td>
</tr>
<tr>
<td>1/3</td>
<td>14/5</td>
<td>31/7</td>
<td>33</td>
<td>12/5/1/6</td>
</tr>
</tbody>
</table>

شکل 3- اولویت بندی زیر‌گوشه‌ها بر اساس سهم مشاهکت واحد سطح هر زیر‌گوشه در دبی اوج خروجی.
پژوهش‌نامه مدیریت حوزه آبخیزی سال اول - شماره ۲ - پاییز و زمستان ۱۳۸۹

جدول ۱۱- اولویت بندی زیرحوزه‌های حوزه آبخیزی رودک به روش‌های مختلف در دوره بارگشته ۲۵ ساله

<table>
<thead>
<tr>
<th>فاصله زیرحوزه (Km)</th>
<th>کاهش دبی اوج در زیرحوزه</th>
<th>دبی اوج در واحده سطح خروجی (M³/S)</th>
<th>سطح ساحه (M³/S)</th>
<th>زیرحوزه</th>
<th>امانته</th>
<th>شمشک</th>
<th>کوکان</th>
<th>گرمابد</th>
<th>حوزه کل</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲/۵</td>
<td>۵</td>
<td>۶/۴۰۶۰</td>
<td>۰/۰۱۱۴</td>
<td>۰/۰۰۳۵</td>
<td>۲/۹۹۲۰</td>
<td>۶/۵۴۸۴</td>
<td>۵/۰۷۰۵</td>
<td>۱/۵۳۰۲</td>
<td>۱۹/۲۱۵</td>
</tr>
<tr>
<td>۷/۶۲۹</td>
<td>۶</td>
<td>۰/۰۱۱۴</td>
<td>۰/۰۰۳۵</td>
<td>۰/۰۵۷</td>
<td>۰/۹۸۲۷</td>
<td>۰/۰۴۱۲</td>
<td>۰/۲۳۰۵</td>
<td>۰/۰۹۰۹</td>
<td></td>
</tr>
<tr>
<td>۱۱/۷۱۰</td>
<td>۷</td>
<td>۰/۰۱۱۴</td>
<td>۰/۰۰۳۵</td>
<td>۰/۰۱۷</td>
<td>۰/۰۵۷</td>
<td>۰/۰۱۷</td>
<td>۰/۰۱۷</td>
<td>۰/۰۱۷</td>
<td></td>
</tr>
<tr>
<td>۰</td>
<td>۸</td>
<td>۰/۰۱۱۴</td>
<td>۰/۰۰۳۵</td>
<td>۰/۰۰۸۸</td>
<td>۰/۰۰۸۸</td>
<td>۰/۰۰۸۸</td>
<td>۰/۰۰۸۸</td>
<td>۰/۰۰۸۸</td>
<td></td>
</tr>
<tr>
<td>۱۱/۷۱۰</td>
<td>۹</td>
<td>۰/۰۱۱۴</td>
<td>۰/۰۰۳۵</td>
<td>۰/۰۰۲۶</td>
<td>۰/۰۰۲۶</td>
<td>۰/۰۰۲۶</td>
<td>۰/۰۰۲۶</td>
<td>۰/۰۰۲۶</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۴- تأثیر موقعیت مکانی زیرحوزه از نظر فاصله‌ناخورجی و مشترکت دبی در واحده سطح آن زیرحوزه بر دبی اوج خروجی

نتیجه و بحث

افزایش جمعیت و دخالت بی رویه بشر در طبیعت، از جمله عوامل افزایش سطح مناطق سیل‌خیز و استعداد سیل‌خیزی در واحد سطح می‌باشد. این موضوع انسان را بر آن داشت تا با شناسایی مناطق بحرانی، می‌توانست به بهترین راه با نحوه شایسته‌تر در عرصه طبیعت اعمال نماید. ضمن اینکه با پرداختن به این مسئله، می‌تواند به بهترین‌های گزار صحرایی اظهیرداری و مهار سیلاب را کاهش دهد. در این تحقیق با استفاده از مدل هیبرد سیلابی HEC-HMS و در نظر گرفتن

Prioritization of Spatial Flooding Regions of Roodak Basin, in Tehran Province Using HEC-HMS Rainfall-Runoff Simulation Model

T. Besharati1, K. Solaimani2, M.R. Ghanbarpour3 and M. Khosroshahi4

1- Former M. Sc. Student, Sari Agricultural Sciences and Natural Resources University
2- Professor, Sari Agricultural Sciences and Natural Resources University,
 (Corresponding author: solaimani2001@yahoo.co.uk)
3- Assistant Professor, Sari Agricultural Sciences and Natural Resources University
4- Research Assistant Professor, Institute of Forests and Ranges

Abstract

The available statistics in all world indicate increasing the frequency and occurrence intensity of flood events. So identifying the effective regions on outlet flood of watershed, on that area, is important and basic actions in flood control and decreasing damages arising from that. Present study was conducted prioritization of main subwatersheds in Roodak basin in Tehran province using HEC-HMS simulation model. After dividing watershed to numbers of subwatersheds, providing and completing needed information for model in Geographical Information System, selecting curve number method in loss section, SCS hydrological simulation method in transportation section and Muskingum method for flood routing, was determined roles of all subwatersheds in outlet flood hydrograph by “Succession Single Subwatersheds Elimination” method and according to it, prioritization was done. This research studied relationship between flood and subwatersheds area too. The results of research show that, Kelookan subwatershed, has more effect than on outlet flood from basin. The results also show that, subwatersheds participation in outlet flood doesn’t have direct relationship with their area.

KeyWords: Subwatersheds prioritization, Flood simulation, HEC-HMS Model, Roodak basin, Tehran province, Geographical Information System (GIS)