دوره 8، شماره 15 - ( بهار و تابستان 1396 )                   جلد 8 شماره 15 صفحات 13-24 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Comparison of Bayesianneural Network, Artificial Neural Network Gene Expression Programming in River Water Quality (Case Study: Belkhviachay river) . jwmr. 2017; 8 (15) :13-24
URL: http://jwmr.sanru.ac.ir/article-1-838-fa.html
قربانی محمدعلی، دهقانی رضا. مقایسه روش‌های شبکه عصبی بیزین، شبکه عصبی مصنوعی و برنامه‌ریزی بیان ژن در تحلیل کیفیتت آب رودخانه‌ها (مطالعه موردی: رودخانه بالخلوچای) . پ‍‍ژوهشنامه مديريت حوزه آبخيز. 1396; 8 (15) :13-24

URL: http://jwmr.sanru.ac.ir/article-1-838-fa.html


چکیده:   (1518 مشاهده)
     میزان کل مواد جامد محلول (TDS) عامل مهمی در مهندسی رودخانه و به­ویژه مطالعه کیفیت آب رودخانه­ها می­باشد. در این تحقیق جهت تحلیل میزان مواد جامد محلول در آب رودخانه بالخلوچای واقع در استان اردبیل از متغیرهای کیفیت شامل بی کربنات، کلرید، سولفات، کلسیم، منیزیم، سدیم و دبی جریان در مقیاس زمانی ماهانه طی دوره آماری (1388-1355) بعنوان ورودی مدل شبکه عصبی بیزین استفاده گردید و نتایج آن با مدل‌های شبکه عصبی مصنوعی و برنامه­ریزی بیان ژن، مقایسه شد. معیارهای ضریب همبستگی، ریشه دوم میانگین مربعات خطا و ضریب نش ساتکلیف برای ارزیابی و نیز مقایسه عملکرد مدل­ها مورد استفاده قرار گرفت. نتایج حاصله نشان داد که هرچند سه مدل مورد بررسی با دقت قابل قبولی توانسته‌اند به تخمین میزان مواد جامد محلول در آب بپردازند، لیکن مدل شبکه عصبی بیزین با بیشترین ضریب همبستگی (966/0)، کمترین ریشه دوم یا جذر میانگین مربعات خطا (mg/lit 094/0) و نیز معیار نش ساتکلیف (998/0) در مرحله صحت سنجی در اولویت قرار گرفت. در مجموع نتایج بیان­گر برتری مدل شبکه عصبی بیزین در تخمین مقادیر کمینه و بیشینه‌ی مواد جامد محلول در آب می‌باشد.
واژه‌های کلیدی: اردبیل، تخمین، کل مواد جامد محلول، مدل
متن کامل [PDF 4956 kb]   (2095 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: ۱۳۹۶/۶/۲۷ | ویرایش نهایی: ۱۳۹۶/۸/۲۷ | پذیرش: ۱۳۹۶/۶/۲۷ | انتشار: ۱۳۹۶/۶/۲۷

فهرست منابع
1. Dastorani, M.T., Kh. AzimiFashi and A. Talebi. 2011. Estimation of Suspended Sediment Using Artificial Neural Network. Watershed Management Research, 6: 61-74 (In Persian).
2. Dayhoff, J.E. 1990. Neural Network Principles. 1st ed., New York: Prentice-Hall International, 621pp.
3. Dehghani, R. and S. MahmoudiVanalia. 2013. Performance analysis of gene expression programs related to chemical parameters in river flow rate (Case Study: Siminehrood). First International Congress on Science Earth, pp: 111-120 (In Persian).
4. Dogan, E., A. Ates and E. Ceren. 2008. Application of artificial neural networks to estimate wastewater treatment plant inlet biochemical oxygen demand. Environmental Progress & Sustainable Energy, 27: 439-446. [DOI:10.1002/ep.10295]
5. Faryadi, S., K. Shahedi and M. Nabatpoor. 2013. Investigation of Water Quality Parameters in Tadjan River using Multivariate Statistical Techniques. Watershed Management Research, 6: 75-92 (In Persian).
6. Ferreira, C. 2001. Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems, 13: 87-129.
7. Fithriasari, K., N. Brodjol, U. Sutikno and H. Kuswanto. 2013. Prediction of Hourly Rainfall using Bayesian Neural Network with Adjusting Procedure. The Third Basic Science International Conference, pp: 1-5.
8. Foresee, F.D. 1997. Gauss-newton approximation to Bayesian regularization International Joint Conference on Neural Network, Houston, pp: 1930-1935.
9. Gazzaz, N.M., M.K. Yusoff, A. ZaharinAris, H. Juahir and M.F. Ramli. 2012. Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors.Journal of Marine Pollution Bulletin, 64: 2409-2420. [DOI:10.1016/j.marpolbul.2012.08.005]
10. Ghorbani, M.A., V.P. Singh, M. Kashani and A. Kashani. 2012. Modelling pan evaporation using genetic programming. Journal of Statistics: Advances in Theory and Application, 8: 15-36.
11. Ghorbani, M.A., R. Khatibi, H. Asadi and P. Yousefi. 2012. Inter- Comparison of an Evolutionary Programming Model of Suspended Sediment Time-series whit other Local Model. INTECH.doi. org/10.5772/47801, 255-282.
12. Ghorbani, M.A. and A. Salehi. 2012. Use of the Gene Expression Planning in the study changes in groundwater quality whit fluctuations of the water level on the plains Barkhar in Esfahan. The Sixth National Congress on Civil Engineering Semnan, Iran, 131-141pp (In Persian).
13. Khanna, T. 1990. Foundation of neural networks: Addison-Wesley Series in New Horizons in Technology.1st ed.New York: Addison-Wesley, 521 pp.
14. Khan, M.S. and P. Coulibaly .2006.Bayesian neural network for rainfall-runoff modeling, Water Resources Research, 420: 56-67. [DOI:10.1029/2005WR003971]
15. Khatibi, R., L. Naghipour, M.A. Ghorbani and M.T. Aalami. 2012. Predictability of relative humidity by two artificial intelligence techniques using noisy data from two Californian gauging stations. Neural computing and application, 23: 2241-2252. [DOI:10.1007/s00521-012-1175-z]
16. MacKay, D.J.C. 1992. Bayesian Interpolation, Neural Computation, 4: 415-447. [DOI:10.1162/neco.1992.4.3.415]
17. Najah, A., A. Elshafie, O. Karim and O. Jaffar. 2009. Prediction of Johor river water quality parameters using artificial neural networks. European Journal of scientific research, 28: 422-435.
18. Singh, K.P., A. Basant, A. Malik and G. Jain. 2009. Artificial neural network modeling of the river water quality-A Case Study. Journal of Ecological Modeling, 220: 888-895. [DOI:10.1016/j.ecolmodel.2009.01.004]
19. Tabatabai, S.A. and P. Dashtizadeh. 2008. Introduction to bayesian neural networks and use to the maintenance of bridges.14th Student Conference of Civil Engineering. University of Semnan, pp: 85-93 (In Persian).
20. Tokar, A.S. and P.A. Johnson. 1999. Rainfall-Runoff modeling using artificial neural networks. Journal of Hydrology Engineering, 4: 232-239. [DOI:10.1061/(ASCE)1084-0699(1999)4:3(232)]
21. Yarmohamadi, A., M. Chitsazan, K. Rangzan and J. MozafariZadeh. 2006. The use of artificial neural networks in modeling water quality Karkhe.First Conference on Environmental Engineering, pp: 107-115 (In Persian).
22. Zhu, Y.M., X.X. Lu and Y. Zhou. 2007. Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment. Geomorphology, 84: 111-125. [DOI:10.1016/j.geomorph.2006.07.010]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2020 All Rights Reserved | Journal of Watershed Management Research

Designed & Developed by : Yektaweb