بررسی تأثیر پارامترهای مختلف ابسته محافظت کاوش عمق ابسته‌گی با GEP و برنامه‌ریزی بیان ظن (GMDH) استفاده از روش گره‌های مدل سازی داده‌ها

سید علی رضایی رهبری، حسین درخشانی و محمد حسن حسینی

چکیده

اینکه هیچکدام از روش‌های مدل‌سازی عمومی از نظر حفاظت کاره‌برانگیز برای روابط عمق ابسته‌گی و بخش‌های مختلف اینکه هیچکدام از روش‌های مدل‌سازی عمومی از نظر حفاظت کاره‌برانگیز برای روابط عمق ابسته‌گی و بخش‌های مختلف

استفاده از ابسته‌گی GEP و GMDH اغلب در مدل‌سازی داده‌ها استفاده می‌شود. اینکه هیچکدام از روش‌های مدل‌سازی عمومی از نظر حفاظت کاره‌برانگیز برای روابط عمق ابسته‌گی و بخش‌های مختلف

مقدمه

رتبه‌رژه روش‌های مدل‌سازی عمومی از نظر حفاظت کاره‌برانگیز برای روابط عمق ابسته‌گی و بخش‌های مختلف اینکه هیچکدام از روش‌های مدل‌سازی عمومی از نظر حفاظت کاره‌برانگیز برای روابط عمق ابسته‌گی و بخش‌های مختلف

ازجمله آنها می‌توان به ابسته‌گی GEP و GMDH از نظر حفاظت کاره‌برانگیز برای روابط عمق ابسته‌گی و بخش‌های مختلف اینکه هیچکدام از روش‌های مدل‌سازی عمومی از نظر حفاظت کاره‌برانگیز برای روابط عمق ابسته‌گی و بخش‌های مختلف

واژه‌های کلیدی: ابسته‌گی GEP و GMDH، ابسته‌گی GEP و GMDH

1- Protective spur dike
بدء یازگان همکاران (۲۳) این آشیانه مطبوع اطلاع‌یابی در جانب این سنگینات و حساب‌یابی آن‌ها باید در شرایطی انجام شود که این آشیانه‌ها به مثابه جریان‌ها باید در شرایطی باشد.

- Schuylkill River
مشخصه عمیق چندجمله‌ای

از روش گروهی مدل‌سازی داده‌ها این روش به عضوی امتیاز شکیکی چندجمله‌ای نیز نامیده می‌شود. در سال ۱۹۶۶ میلادی. به‌طور کلی، چندجمله‌ای ساخته می‌شود از سایر به‌عنوان یک مدل رایج بیشتر. مدل‌های گروهی مدل‌سازی داده‌ها (GMH) مورد استفاده قرار گرفته است. این روش به بافت‌های فیزیکی مدل‌سازی داده‌ها از دو روش گروهی مدل‌سازی داده‌ها و از نظر مصرف جمعیت‌های شیب‌های معنی‌دار می‌باشد. در این دانشگاه این روش به‌عنوان یک مدل بسیاری از مشاهدات، برای داده‌های مناسب و بافت‌های در تحقیق‌های پیوسته، مقدماتی دانشگاهی مورد استفاده قرار گرفته است.

داده‌ها که در لیست‌های مدوره نو در این تحقیق می‌باشند در بافت‌های مناسب و بافت‌های مدل‌سازی داده‌ها استفاده شده است. این روش به بافت‌های فیزیکی مدل‌سازی داده‌ها است و سپس به عنوان یک مدل بسیاری از مشاهدات، برای داده‌های مناسب و بافت‌های در تحقیق‌های پیوسته، مقدماتی دانشگاهی مورد استفاده قرار گرفته است.

مقدماتی دانشگاهی مورد استفاده قرار گرفته است.

2- Gene expression programming

در رابطه ۳، مقدار داده مشاهده‌ای (E) تعداد غوران مجموعه‌ی ورودی می‌باشد.

\[E = \frac{G_{m} \left(x_{1} - G_{1} \right)^{2}}{M} \min \]

1- Group method of data handling
برنامه‌بری یک آن
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
برنامه‌بری یک آن
(GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP) (GEP)
(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
کمتر از مقدار مشاهده‌ای تخمین‌شده‌تان. در صورتی که در RMSE و MAE مقادیر خطای نسبی در پیش‌بینی‌ها بیش از 0.5 درصد می‌باشد.

متغیرهای مقدار GMDH سنجی در مدل GMDH نسبت به مدل GEP باربیتر از مقادیر RMSE 0.063/0.086 به مقادیر 0.045/0.061، کاهش و GEP در مدل GMDH افزایش یافته است. علاوه بر این، مدل GMDH توانایی سادگی GEP نسبت به روابط انرژی دارد و مدل GEP در مدل GMDH افزایش یافته است. در شکل 3 نیز مقادیر مشاهده‌ای در مقابل مقادیر تخمین‌شده توسط مدل، ترسیم شده است. همان‌طور که شکل 3 نشان می‌دهد خطای نسبی مدل محاسباتی بیشتر است. در شکل 3 نیز مقادیر مشاهده‌ای در مدل GMDH در محیط نسبی (0.01% و 0.03%) می‌باشد و عالا مقادیر.

جدول 1- نتایج مدل‌های مختلف در قسمت آموزش و صحت سنگی

<table>
<thead>
<tr>
<th>NS</th>
<th>RMSE</th>
<th>MAE</th>
<th>مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M)</td>
<td>(M)</td>
<td>GMDH</td>
</tr>
<tr>
<td>0/50</td>
<td>0.64</td>
<td>0.54</td>
<td>مدل GMDH</td>
</tr>
<tr>
<td>0/55</td>
<td>0.61</td>
<td>0.53</td>
<td>مدل GMDH</td>
</tr>
<tr>
<td>0/60</td>
<td>0.54</td>
<td>0.49</td>
<td>مدل GMDH</td>
</tr>
<tr>
<td>0/51</td>
<td>0.65</td>
<td>0.53</td>
<td>مدل GMDH</td>
</tr>
</tbody>
</table>

شکل 2- تصویر شماتیک آیشکن‌ها و پارامترهای به کارگیرده شده

شکل 3- نسبت مشاهده‌ای در مقابل مقدار تخمین‌شده توسط مدل

$\% \text{Rsd} = 0.13 + (0.18 \times X_{1}) + (0.028 \times \frac{X}{L_{f}}) - (0.037 \times \theta) + (0.048 \times \frac{X}{L_{f}} \times X_{1}) + (0.045 \times \theta \times X_{1})$

+ $(0.064 \times \frac{X}{L_{f}} + (0.62 \times X_{1}^{2}) - (0.018 \times \frac{X}{L_{f}}^{2} - (0.03 \times \theta^{2})$
که در آن X_6 برای با X_11 به ترتیب متغییر می‌شود.

$$X_6 = 0.44 + (0.87\times \theta) + (1.1\times \frac{L_p}{L_f}) - (0.57\times F_d) - (0.28\times \frac{L_p}{L_f} \times \theta) - (0.041\times F_d \times \theta)$$

و همچنین X_{11} به ترتیب F_1 و M در مدل GMDH با استفاده از یک شبکه سه لایه است.</p>

به همین دلیل نیز رابطه ارائه شده درای این سه قمت است که GEP نیز از GMDH در گروهی قرار گرفته می‌باشد. در مدل GMDH با همبستگی رابطه ارائه شده توسط مدل GEP هم، به دلیل بررسی دقیقتر مدل GMDH را در نظر گرفته و سپس مدل مدل دیگر جدول 6 و 7 گزارش شده است. نتایج مقایسه‌های دیگری از مدل GEP نیز در مدل GMDH به طوری که مدل کنار گفت در هر دو مدل ارائه شده. در واقع GEP مدل مورد نظر نسبت به GMDH به طوری که مدل کنار گفت در هر دو مدل ارائه شده. در واقع GEP مدل مورد نظر نسبت به GMDH به طوری که مدل کنار گفت در هر دو مدل ارائه شده. در واقع GEP مدل مورد نظر نسبت به GMDH به طوری که مدل کنار گفت در هر دو مدل ارائه شده. در واقع GEP مدل مورد نظر نسبت به GMDH به طوری که مدل کنار گفت در هر دو مدل ارائه شده. در واقع GEP مدل مورد نظر نسبت به GMDH به طوری که مدل کنار گفت در هر دو مدل ارائه شده. در واقع GEP مدل مورد نظر نسبت به GMDH به طوری که مدل کنار گفت در هر دو مدل ارائه شده. در واقع GEP مدل مورد نظر نسبت به GMDH به طوری که مدل کنار گفت در هر دو مدل ارائه شده. در واقع GEP مدل مورد نظر نسبت به GMDH به طوری که مدل کنار گفت در هر دو مدل ارائه شده. در واقع GEP مدل مورد نظر نسبت به GMDH به طوری که مدل کنار گفت در هر دو مدل ارائه شده. در واقع GEP مدل مورد نظر نسبت به GMDH به طوری که مدل کنار گفت در هر دو مدل ارائه شده. در واقع GEP مدل مورد نظر نسبت به GMDH به طوری که مدل کنار گفت در هر دو مدل ارائه شده. در واقع GEP مدل مورد نظر N

<table>
<thead>
<tr>
<th>مدل</th>
<th>RMSE</th>
<th>MAE</th>
<th>GMDH</th>
</tr>
</thead>
<tbody>
<tr>
<td>X/L</td>
<td>X/L</td>
<td>X/L</td>
<td>X/L</td>
</tr>
<tr>
<td>لغزش</td>
<td>لغزش</td>
<td>لغزش</td>
<td>لغزش</td>
</tr>
<tr>
<td>X_6</td>
<td>X_6</td>
<td>X_6</td>
<td>X_6</td>
</tr>
</tbody>
</table>

جدول 3 مقایسه ترتیب جسمانی مقادیر مختلف نسبت به پارامتر X/L.
به تدریس تأثیر پارامترهای مختلف آب‌کن محافظ بر کاهش عمق آب‌شکی با استفاده از روش گروهی مدل‌سازی داده‌ها ۲۰۰

آب‌کن محافظ و فاصله آن از اولین آب‌کن نسبت مستقیم دارند. ولی افزایش نسبی طول آب‌کن محافظ به اولین آب‌کن نسبت می‌کود دارد.

تحلیل آماری تجربه‌ها مطالعه (۶۴) بر روی تأثیر آب‌کن محافظ بر آب‌شکی سری‌های سبز، نشان داد که افزایش نسبی آب‌شکی با نسبت عمق آب بالای‌بست به طول

\[
\%\text{Rsd} = \left[\frac{5.419 + 0.4F_d}{5.159 + F_d} \right] \times \left[\frac{U}{L} \times \frac{L_p}{L_f} \right] + \left[\frac{U}{L} \times \left(\frac{1 - 1.651}{2.729 \times 0} \right) \right] \times \left[\frac{L_p}{L_f} \right] + \left[\frac{U}{L} \times \left(\frac{0.02 - 0.4F_d}{2.044 \times (5.419 - 0)} \right) \right] \times \left[\frac{L_p}{L_f} \right]
\]

شکل ۳- بیان درختی محاسبه با رابطه ارائه‌شده توسط مدل GMDH

Figure 4. Equivalent flowchart with the provided equation by GEP model

جدول ۳- نتایج مدل GMDH در قسمت آموزش و صحت سنجی با حذف پارامترهای مختلف

<table>
<thead>
<tr>
<th>تغییر</th>
<th>کاری</th>
<th>Ns</th>
<th>RMSE</th>
<th>MAE</th>
<th>Ns</th>
<th>RMSE</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>غیاب (Ucr) در غیاب</td>
<td>غیاب (Ff) در غیاب</td>
<td>۰.۸۱</td>
<td>۰.۸۸</td>
<td>۰.۷۸</td>
<td>۰.۷۶</td>
<td>۰.۷۷</td>
<td>۰.۷۹</td>
</tr>
<tr>
<td>غیاب (X/Lf) در غیاب</td>
<td>غیاب (Lp/Lf) در غیاب</td>
<td>۰.۸۵</td>
<td>۰.۸۹</td>
<td>۰.۸۸</td>
<td>۰.۸۷</td>
<td>۰.۸۶</td>
<td>۰.۸۵</td>
</tr>
<tr>
<td>غیاب (θ) در غیاب</td>
<td>غیاب (θ) در غیاب</td>
<td>۰.۸۵</td>
<td>۰.۸۹</td>
<td>۰.۸۸</td>
<td>۰.۸۷</td>
<td>۰.۸۶</td>
<td>۰.۸۵</td>
</tr>
<tr>
<td>کل</td>
<td>کل</td>
<td>۰.۸۵</td>
<td>۰.۸۹</td>
<td>۰.۸۸</td>
<td>۰.۸۷</td>
<td>۰.۸۶</td>
<td>۰.۸۵</td>
</tr>
</tbody>
</table>
جدول 4- نتایج مدل GEP در قسمت آموزش و صحبت سنجی با حذف یک پارامتری مختلف

<table>
<thead>
<tr>
<th>Peme</th>
<th>NS</th>
<th>RMSE</th>
<th>MAE</th>
<th>NS</th>
<th>RMSE</th>
<th>MAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>افتاده</td>
<td>0.20</td>
<td>0.37</td>
<td>0.34</td>
<td>0.48</td>
<td>0.66</td>
<td>0.57</td>
</tr>
<tr>
<td>0.66</td>
<td>0.57</td>
<td>0.48</td>
<td>0.34</td>
<td>0.37</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>0.19</td>
<td>0.34</td>
<td>0.48</td>
<td>0.66</td>
<td>0.37</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>0.20</td>
<td>0.37</td>
<td>0.48</td>
<td>0.66</td>
<td>0.19</td>
<td>0.34</td>
<td>0.48</td>
</tr>
<tr>
<td>0.48</td>
<td>0.66</td>
<td>0.19</td>
<td>0.34</td>
<td>0.37</td>
<td>0.20</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Evaluating the Effect of Various Parameters of Protective Spur Dike on Scour Depth Reduction using Group Method of Data Handling (GMDH) and Gene Expression Programming (GEP)

Saeed Farzin¹, Hojat Karami², Reza Hajiabadi³, Shahab Nayyer³ and Seyed Mahmoud Hamzeh Ziabari⁴

1- Assistant Professor, Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University. (Corresponding Author: Saeed.farzin@semnan.ac.ir)
2- PhD Student of Water Engineering, Faculty of Civil Engineering, Iran University of Science and Technology, Tehran
3- PhD Student of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University
4- PhD Student of Sea Structures, Faculty of Civil Engineering, Iran University of Science and Technology, Tehran

Received: November 27, 2017 Accepted: October 28, 2018

Abstract

Spur dikes are one of the common methods to protect rivers against erosion. Scouring around the spur dikes is an important factor that can disorder the structural performance. Using protective spur dikes is proper technique reduce the scour amount. In this research, the GMDH and GEP model used in order to evaluate and estimate the effect of various parameters of protective spur dikes on scour depth around the main spur dikes. Important parameters consist of protective spur dikes angle (θ), protective spur dikes length (Lp), main spur dikes length (Lf), distance from main spur dikes (X), flow intensity (\(\frac{U}{Fr} \)) and Froude number (Fr) are considered as the model inputs. Results of training set and testing set indicate that GMDH model is better than GEP model as the MAE and RMSE error in the testing set data are reduced from 0.063 and 0.086 (in GEP model) to 0.045 and 0.061 (in GMDH model) respectively. Also, the Nash-Sutcliffe criteria increased from 0.51 (in GEP model) to 0.75 (in GMDH model). In the following, using the GMDH and GEP models and according to the nature of the problems, the equations are suggested to predict the scour depth reduction in the first main spur dikes. The results of sensitivity analysis indicate that the most effective parameter in decreasing the scour depth around the first main spur dikes is (\(\frac{X}{L_f} \)).

Keywords: Scouring, Protective spur dikes, Sensitivity analysis, Gene expression programming, Group method of data handling.