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1- Generalized Linear Models(GLM)
3- Multi Layer Perceptron

2- Deep Learning
4- Restricted Boltzmann Machine
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Table 1. The statistical mean of the parameters used in modeling mobility and daily potential of Zabol station
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Table 2. Designed scenarios for network structure

a5t o e 00543,5 i 5 (slagyyliw Y Sy

et lass 455 (93999 bl o
Y- et J e ol oy (8T lol il e gy i g 85 Caghe) ko sles (i (slod 5L sles ‘
q s ) e ol ey o B el (55l ¢nSibie Cugboy (i Cughy Sl Cugb) (nSike (slod (Jilis slo> '
q St 3l s b ety o8] el (S gl (Sl Caghy ST Cugl) 5:Sle (slod ¢ JBla (slod Sl (slod v
A 5] 5 ] ol (Sl gl i Sy 513> oo b slad i sbad 551> slas r
A Sl 1 e b sy (ke Casho) (JBlis Cush) s gl (S0l (slod ¢ JBli (glod (S (gloo X
v s 05 0l s el gy (Sl Cagl) (ke (gle (Sl slod 5S> (5lod ’
5 Gl g b sy ¢ pSile Cughy (:Sile (glod ¢ J8las (glod (iShas (slod v
o ol Sl e ol e e Sike gl cnSike (slod ¢S (slod .
. Sl 3l e ol Gy (Sl Caghy (S slod )
¥ e 0l oy il Cagby S (sl N
¢ sl 5 (ke Cugly iShs (gled "
v il s ol ey S lhs (gled .
v Jbg_,‘_c)“) ‘)ﬁf‘»dbb w
\ Shs gl f
! oo \a
\ o) o Vs
y Jolas glod— pSlas glod W
\ OSSls Cagh, "
v w}‘)ﬁiﬁ]‘)jg‘»dlﬂ) "
. 0l gl ¢ Sl (clod n
v )«5]»@919)‘)'51» sl "
! e e o "
y 3 s g Sl glos v
X Sl el “‘
\ Jolas glo> ¥

ot Gl o b obE g ple e 03,5 bl (GLM) A8l prox L NV

(B) 3,5 (o0 S 5
(DL) e 553

S el (a8 5l (S Bres ok S
oz S5 b baSs )l (DL) Gros (653
@ bid gl Ban &5 6,5 0 JSE (Jad s Jas
deng0 (codly | diedgw (slodil coles 0 g yude slad
Do yidy owas aSh d baY sl 4 (F) col
(YF) () JS8) 9 cn oz (ilwdingg dlins
boleasid cnl (Aigel slagby) I (So S omene
slaY g L g (oSigelitn slapn oSl I eslazl
aY sl gy cnl 3 (FE) 3,5 e plosl el >
JS o) cals 3 g d9de 03 hjgel Iz g0y
Osen 050 plml )l g 38 el aSs
9 Bees ygb &b 9 o)lble lacgli pogdle
Sglate MalS 5 (bjgal ogad Lld Sl 4Y W gy
SaS by ool caYain 09y s ale e Sl oo
Shpe P S Cyge Gds & gy Hlinl gogud

oo slagdgy plo o5 Sloj g Sladls @jer Jlay sgba
O P Jde O:’.l AW &L&.gl Wil o cawlio ygmw S
Sl (M) Sl (53 3 Sdas s (il Jse sla b,
ok sleimoin 9 iledde 5> Ghey (il I (e
(YAS) $ilos S oaliu!
(RF) gssbas JSis

o s pele Jo o (Bl S Jie
aegene I Sl lp g Cl 65k lapn,oSl
¥ 9 A 0 rabul @YL sy L ‘) Sdudwd dosls
o) c e
wb o bl &SpmeS) e S sl SN
Sledp bl g lus jl eolatwl b a)b 4SS s
bl lgn b a8 o odlatwl aodly jd (g leMbl
oo S5 Sy by ol (1) sl lasise Sl s
ol rerdiod gla by, odlgls 4 late o (g yiel Ll
Bagging s a5 cusl ola sdiaiws des 1wl oSl oy
ol ©33 (63b5 35 (bgy ol 3 (8) 25 0 B4

1- Regression 2- Nonlinear

4- Greedy Layer-wise Unsupervised Pre-training Algorithms

3- Deep Learning
5- Backward Propagation Machine
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Figure 1. The structure of the deep belief network (22)
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1- Vanishing radient

2- Visible Layer
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Table 3. Results of analysis of selected models at the studied station
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Figure 2. Simulated and observed values of evapotranspiration using different models
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Abstract

Evapotranspiration is one of the most important components of the hydrology cycle for
planning irrigation systems and assessing the impacts of climate change hydrology and correct
determination is important for many studies such as hydrological balance of water, design of
irrigation irrigation networks, simulation of crop yields, design, optimization of water resources,
nonlinearity, inherent uncertainty, and the need for diverse climatic information in estimating
evapotranspiration have been the reasons why researchers have used artificial intelligence-based
approaches. In this study, to estimate accurately the daily reference evapotranspiration between
2009-2018 in Zabol city, north of Sistan and Baluchestan province, first was used a standard
FAO-Penman-Montith method and Zabol synoptic station meteorological data- the ETo
reference transpiration is calculated and then presented by various scenarios of meteorological
parameters including: maximum, minimum and mean temperature, maximum, minimum and
mean humidity, precipitation, sunshine, wind speed and evaporation as inputs for deep learning
models, Random forest and generalized linear model were attempted on a daily time scale More
accurately. In estimating daily evapotranspiration in these models, 25 scenarios were selected
from meteorological data combination and FAO-Penman-Monteith method was used to evaluate
the models. Among the investigated scenarios, the M5 scenario (maximum, minimum and mean
temperature, maximum, minimum and mean humidity, wind speed, pan evaporation) for deep
learning model with minimum error (0.517) and highest correlation coefficient (0.517). 0.996
had the best performance among the above models. The deep learning model showed more
accuracy and stability than other models. Hence, this study is recommended a deep learning
model for estimating reference plant evapotranspiration in Sistan plain.

Keywords: Deep Learning, Evapotranspiration, FAO-Penman-Monteith, Uncertainty
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