دوره 13، شماره 26 - ( پاییز و زمستان 1401 1401 )                   جلد 13 شماره 26 صفحات 202-189 | برگشت به فهرست نسخه ها


XML English Abstract Print


گروه مهندسی آب، دانشکده کشاوری، دانشگاه شهرکرد، ایران
چکیده:   (3076 مشاهده)
چکیده مبسوط
مقدمه و هدف: شکست سد و رها­شدن آب ذخیره ­شده پشت سد به­ عنوان یکی از مهم­ترین مسائل در طراحی سد­ها بوده و لازم است به وقوع و عواقب آن توجه گردد. بنابراین سیاست­ گزاران و دولت­مردان موظف هستند جهت جلوگیری از وقوع خطرات احتمالی ناشی از شکست سد­ها اقداماتی را انجام دهند. از جمله این اقدامات می­ توان به ایجاد دیوار حائل در مسیر جریان سیلاب ناشی از شکست سد­ها اشاره نمود.
مواد و روش‌ها: در تحقیق حاضر به تعیین و بررسی ایجاد دیوار حائل در مسیر جریان سیلاب ناشی از شکست سد خاکی قره آقاچ در فواصل و سناریو­های مختلف پرداخته شده است. پارامتر­های ناشی از شکست سد با استفاده از مدل BREACH تعیین و سپس اطلاعات آن وارد نرم­ افزار HEC-RAS شده است.
یافته‌ها: نتایج نشان داد برای حالتی­ که روزنه در تراز 2451 متر از بدنه سد ایجاد گردد، از 50 مقطع مورد بررسی 18 مقطع از طرف ساحل سمت راست و یا ساحل سمت چپ و یا هر دو تعرض می­ نماید. در مقطع حد فاصله 300 متری از سد، جریان آب به ارتفاع 1/74 متر از ساحل سمت راست و جریان آب به ارتفاع 2/55 متر از ساحل سمت چپ تعرض می­ نماید. در فاصله 2200 متری از سد، جریان آب به ارتفاع 5/15 متر از ساحل سمت راست و به ارتفاع 0/51 متر از ساحل سمت چپ تعرض می­ نماید. در مقطع 3000 متری از سد جریان آب به ارتفاع 3/39 متر از ساحل سمت چپ تعرض می ­نماید. در مقطع 3100 متری از سد، جریان آب به ارتفاع 2/68 متر از ساحل سمت چپ تعرض می­ نماید. در فاصله 4400 متری از سد جریان آب به ارتفاع 1/19 متر از ساحل سمت راست تعرض می ­نماید. نهایتاً مقطع 4700 از سد جریان آب به ارتفاع 3/48 متر از ساحل سمت راست تعرض می ­کند. این در حالیست­ که اگر در تراز 2446 متر از بدنه سد روزنه ­ای ایجاد گردد، از 50 مقطع مورد بررسی 15 مقطع از ساحل سمت راست و یا ساحل سمت چپ و یا هر دو تعرض می ­نماید. بنابراین در این حالت در مقطع حد فاصله 300 متری از سد جریان آب به ارتفاع 0/8 متر از ساحل سمت راست و همچنین جریان آب به ارتفاع 2/12 متر از ساحل سمت چپ تعرض می­ نماید. در فاصله 2200 متری از سد، جریان آب به ارتفاع 4/21 متر از ساحل سمت راست تعرض می­ کند. در فاصله 3000 متری از سد، جریان آب به ارتفاع 2/86 متر از ساحل سمت چپ تعرض می ­نماید. در مقطع 3100 متری از سد، جریان آب به ارتفاع 2/23 متر از ساحل سمت چپ تعرض می­ کند. در فاصله 4400 متری از سد جریان آب به ارتفاع 0/9 متر از ساحل سمت راست تعرض می ­نماید. نهایتاً در فاصله 4700 متری از محل سد جریان آب به ارتفاع 2/97 متر از ساحل سمت راست تعرض می ­نماید.
نتیجه‌گیری: مناطق با احتمال سیل­ گیری بیشتر و با اولویت برای احداث دیوار حائل مشخص شد. شکست سد در تراز 2451 نسبت به تراز 2446 سبب سیل­ گیری مقاطع بیشتری در طرفین رودخانه مهرگرد خواهد شد. در بین مقاطع مورد بررسی بیشترین تعرض جریان آب در فاصله 2200 متری و مربوط به زمانی­ است که در تراز 2451 متری از بدنه سد روزنه ایجاد گردد که با توجه به موقعیت حساس ­تر آن نسبت به سایر مقاطع اهمیت خاص­ تری یافته و نیاز به احداث دیوار حائل است.
متن کامل [PDF 2383 kb]   (1024 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1401/2/4 | ویرایش نهایی: 1401/11/5 | پذیرش: 1401/3/16 | انتشار: 1401/9/10

فهرست منابع
1. Acement, G.S. and V.R. Schneider. 1985. Guide for selecting Manning's roughness coetfficent for natural channels and Flood plains, Water Resources paper 2339, US Geological Survey, Washington DC. (Updated 2002).
2. Amini, A.A. and R. Arfa Nia. 2002. Flood zoning due to Zayandehrud dam failure using HEC- GeoRAS and HEC-RAS model. 10th National Conference on Agriculture and Sustainable Natural Resources. Tehran (In Persian).
3. Amiri, M., M. Kaikha and F. Hassanpour. 2019. Evaluating the performance of Sistan and Zahak diversion dams in Sistan River using HEC-RAS hydraulic model. Journal of Environmental Scince and Technology, 20: 51-67 (In Persian).
4. Anonymous. 2013. Report on bed and boundary studies and the first stage of organizing the Mehrgerd River (Ghare Aghach). Basic Studies Report (Chapters 1 to 4). Sepahan Padid Ab Consulting Engineers. Isfahan Regional Water Company. Iran Water Resources Management Company. Ministry of Power, (In Persian).
5. Arjomand, M., M. Mohammadi, M. Najafian Azar and A. Yosefi Abasalilo. 2019. Investigation of Rugab phenomenon and its effects on hydraulic failure of earth dams Journal of Science and Engineering Elites, 4: 59-64 (In Persian).
6. Balogun, O.S. and H.O. Ganiyu. 2017. Study and analysis of asa river hypothetical dam break using HEC-RAS. Nigerian Journal of Technology, 36: 315-321. [DOI:10.4314/njt.v36i1.39]
7. Bharath, A., A.V. Shivapur and C.G. Hiremath. 2021. Dam Break Flood Routing and Inundation Mapping Using HEC-RAS and HEC-GeoRAS. In: Jha R., Singh V. P., Singh V., Roy L., Thendiyath R. (eds) Water Resources Management and Reservoir Operation. Water Science and Technology Library, 107: 129-137. [DOI:10.1007/978-3-030-79400-2_11]
8. Bombay Chi, S. and S. Hosseini. 2007. Several experiments in working with the HEC-RAS model in the analysis of non-permanent flow failure of Bidvaz Esfarayen dam. Sixth Iran Hydraulic Conference. 13 to 15 September. Shahrekord University, (In Persian).
9. Brunner, G.W. 2016. HEC-RAS River Analysis System. Hydraulic Reference Manual, 538 pp.
10. Brunner, G.W. 2020. HEC-RAS River Analysis System. Hydraulic Reference Manual, 520 pp.
11. Chow, V.T. 1959. Open channel hydraulics. McGraw-Hill Book Company, Inc, New York, pp: 3-127.
12. Desta, H.B. and M.Z. Belayneh. 2021. Dam breach analysis: a case of Gidabo dam, Southern Ethiopia. International Journal of Environmental Science and Technology, 18: 107-122. [DOI:10.1007/s13762-020-03008-0]
13. Ebrahimi, N.G., M. Fathi Moghadam, S.M. Kashefipour, K. Ebrahimi and M. Saneie. 2008. A Study of the effect of submerged vegetation covers on river roughness coefficient. Agricultural Research, 8: 79-87 (In Persian). [DOI:10.3923/jas.2008.2118.2123]
14. Falahatgar, M., A. Bahremand, V.B. Sheikh and A. Atrakchali. 2010. The effects of vegetation Manning roughness coefficient on the hillslope in Aghghala rangelands. Journal of Water and Soil Conservation, 17: 125-141 (In Persian)
15. Fathi Moghadam, M. 1996. Momentum absorption in non-rigid non submerged tall vegetative along rivers. Ph.D. Thesis. University of waterloo. Ontario. Canada, 488 pp.
16. Guide for determining the hydraulic roughness coefficient of rivers. 2016. Criterion No. 688. Management and Planning Organization, (In Persian).
17. Hajeri, S., A.V. Shivapur and B. Venkatesh. 2016. Flood Plain Mapping and Dam Break Analysis for Neerasagar Reservior. International Research Journal of Engineering and Technology, 3: 1279-1285.
18. Hassanzadeh, Y., A. Abdi Kordani, M. Hassanzadeh and M. Shafiei Najd. 2019. Earthen Dams Break Analysis, Flood Routing and Mapping using Mathematical Models and Geographic Information System (A Case Study: Alavian Dam). Journal of Soil and Water Science, 29: 121-134 (In Persian).
19. Jarvela, J. 2005. Effect of submerged flexible vegetation on flow structure and resistance. Journal of Hydrology, 307: 233-241. [DOI:10.1016/j.jhydrol.2004.10.013]
20. Judy Thani, R. and A.R. Parvishi. 2018. Investigation of earthen dam failure due to erosion using Breach-GUI software and downstream flood zoning using HEC-RAS software. First National Conference on Infrastructure Engineering. 18 and 19 October. Urmia University (In Persian).
21. Karim, I.R., Z.F. Hassan, H.H. Abdullah and I.A. Alwan. 2021. 2D-HEC-RAS Modeling of Flood Wave Propagation in a Semi-Arid Area Due to Dam Overtopping Failure. Civil Engineering Journal, 7: 1501-1514. [DOI:10.28991/cej-2021-03091739]
22. Khalilzadeh, S., H. Saeidian and S. Saeidian. 2019. Investigate the Behavior of Concrete Gravity Walls Under Seismic Loading and the Permissibility of its Horizontal Displacement. Journal Analysis of Structure and Earthquake, 15: 67-76 (In Persian).
23. Latrubesse, E.M., E. Park, K. Sieh, T. Dang, Y.N. Lin and S.H. Yun. 2020. Dam failure and a catastrophic flood in the Mekong basin (Bolaven Plateau) southern Laos, 2018. Geomorphology, 362: 107221. [DOI:10.1016/j.geomorph.2020.107221]
24. Mohammadi, S. and M. Kashefipour. 2012. Numerical modeling of flow using an improved dynamic roughness coefficient (Case study: Karun River). Irrigation and Water Engineering of Iran, 3: 99-110 (In Persian).
25. Moya Quiroga, V., S. Kure, K. Udo and A. Mano. 2016. Application of 2D Numerical Simulation for the Analysis of the February 2014 Bolivian Amazonia Flood: Application of the New HEC-RAS Version 5. RIBAGUA 3: 25-33. [DOI:10.1016/j.riba.2015.12.001]
26. Najar, M. and A. Gul. 2022. Investigating the Influence of Dam-Breach Parameters on Dam-Break Connected Flood Hydrograph. Research Article. 33(5): 12501-12524. [DOI:10.18400/tekderg.796334]
27. Psomiadis, E., L. Tomanis, A. Kavvadias, K.X. Soulis, N. Charizopoulos and S. Michas. 2021. Potential Dam Breach Analysis and Flood Wave Risk Assessment Using HEC-RAS and Remote Sensing Data: A Multicriteria Approach. Water, 13: 364. [DOI:10.3390/w13030364]
28. Ramola, M., P.C. Nayak, B. Venkatesh and T. Thomas. 2021. Dam Break Analysis using HEC-RAS and Flood Inundation Modelling for Pulichinatala Dam in Andhra Pradesh, India. Indian Journal of Ecology, 48: 620-626.
29. Sepaskhah, A.R. and H. Bondar. 2002. Estimation of Manning roughness coefficient for bare and vegetated furro w irrigation. Biosystems Engineering, 82(3): 351-357. [DOI:10.1006/bioe.2002.0076]
30. Seyfizadeh, M., A. Emadi and R. Fazlola. 2014. Investigation of polrood dam break due to overtopping and its resulted flood routing in the downstream. Journal of Watershed Management Research, 5: 15-29 (In Persian).
31. Shahrezaie, S.A. 2021. Evalution of the Effects of Ghare Aghach Earth Dam Breaking on River Downstream. MSc thesis. Faculty Agriculture. Shahrekord University. Iran, 142 pp (In Persian).
32. Shahrezaie, S.A., M. Radfar and E. Ghanbari Adivi. 2021. Evaluation of banks from the failure of the Ghare Aghach earth dam using the Froehlich method (1995). 19th Iranian Hydraulic Conference. Mashhad Ferdowsi University, (In Persian).
33. Shahrezaie, S.A., M. Radfar and E. Ghanbari Adivi. 2021. Evaluation and comparison of parameters due to failure of Ghare Aghach dam using Froehlich method and BREACH model. Quarterly Journal on Water Engineering, 9: 18-32 (In Persian).
34. Shahrezaie, S.A., M. Radfar and E. Ghanbari Adivi. 2022. Evaluation of Risk Areas Due to the Piping and Failure of Ghare Aghach Earth Dam Using Satellite Images. Iranian Journal of Watershed Management Science and Engineering Iranian Journal of Watershed Management Science and Engineerin, 15: 47-57 (In Persian).
35. Shahrezaie, S.A., M. Radfar, E. Ghanbari Adivi, Sh Mosavi and J. Shomali. 2021. Evaluation of failure parameters of Ghare Aghach earth dam in arterial leakage and overflow flow using breach gui model. 19th Iranian Hydraulic Conference. Mashhad Ferdowsi University, (In Persian).
36. Sharma, P. and S. Mujumdar. 2016. Dam Break Analysis Using HEC-RAS and HEC-GeoRAS - A Case Study of Ajwa Reservoir. Journal of Water Resources and Ocean Science, 5: 108-113. [DOI:10.11648/j.wros.20160506.15]
37. Tate, E., D. Maidment, F. Olivera and D. Anderson. 2002. Creating a terrain model for floodplain mapping. Journal of Hydrologic Engineering, 7(2): 100-108. [DOI:10.1061/(ASCE)1084-0699(2002)7:2(100)]
38. Toapaxi Alvarez, J. and A. Acero Quilumbaquin. 2021. Analysis of Flooding by Dam Breaking Using the 2D HEC-RAS Model: Case Study of the Mulacorral Dam. Tungurahua Province. Ecuador. Revista Politecnica. 48: 51-64. [DOI:10.33333/rp.vol48n1.05]
39. Urzica, A., A. Mihu-Pintilie, C.C. Stoleriu, C.I. Cîmpianu, E. Huţanu, C.I. Pricop and A. Grozavu. 2021. Using 2D HEC-RAS Modeling and Embankment Dam Break Scenario for Assessing the Flood Control Capacity of a Multi-Reservoir System (NE Romania). Water, 13: 1-28. [DOI:10.3390/w13010057]
40. Zahiri, A. 2011 Simulation of gradually varied flow in compound channels. Journal of Water and Soil Conservation, 17: 181-190 (In Persian).

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.