دوره 14، شماره 28 - ( پاییز و زمستان 1402 )                   جلد 14 شماره 28 صفحات 67-55 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohamadi S, Hassanzadeh R. (2023). A survey on spatial and temporal variations of groundwater quality and quantity index using Geographic Information System and Geostatistics (Case study: Bam- Narmashir plain). J Watershed Manage Res. 14(28), 55-67. doi:10.61186/jwmr.14.28.55
URL: http://jwmr.sanru.ac.ir/article-1-1229-fa.html
محمدی صدیقه، حسن زاده رضا. بررسی تغییرات مکانی و زمانی شاخص کیفیت و کمیت آب زیرزمینی با استفاده از سیستم اطلاعات جغرافیایی و زمین آمار (مطالعه موردی: دشت بم-نرماشیر) پ‍‍ژوهشنامه مديريت حوزه آبخيز 1402; 14 (28) :67-55 10.61186/jwmr.14.28.55

URL: http://jwmr.sanru.ac.ir/article-1-1229-fa.html


1- گروه اکولوژی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان
2- گروه اکولوژی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته کرمان
چکیده:   (1565 مشاهده)
چکیده مبسوط
مقدمه و هدف: این تحقیق با هدف بررسی خصوصیات کیفی و کمی منابع آب زیرزمینی دشت بم- نرماشیر با استفاده از سیستم اطلاعات جغرافیایی و زمین آمار انجام شد.
مواد و روشها: در این راستا از روش زمین آماری کریجینگ و سیستم اطلاعات جغرافیایی جهت بررسی توزیع مکانی خصوصیات کیفی (شامل میزان کلر، هدایت الکتریکی، غلظت املاح محلول، منیزیم، پتاسیم، اسیدیته، سولفات و بیکربنات) و شاخص کیفیت آب زیرزمینی (GQI) و نیز عمق آب زیرزمینی در دوره آماری ده ساله 1400-1390 استفاده شد.
یافتهها: نتایج حاصل از تهیه نقشه­‌های توزیع مکانی متغیرهای کیفیت آب در دوره آماری مورد بررسی حاکی از افزایش مقدار این پارامترها (به­جز متغیر pH) از جنوب به شمال دشت است. بهطوری که از نیمه دشت بهسمت شمال این روند افزایشی شدت بیشتری بهخود میگیرد. نتایج حاصل از تهیه نقشه تفاضل شاخص GQI در طول دوره 10 ساله مورد بررسی حاکی از آن است که در سطح کوچکی از دشت وضعیت کیفیت آب زیرزمینی بهبود یافته است و در سایر مناطق دشت بویژه در قسمت‌های شمالی آن میزان اختلاف این شاخص در ابتدا و انتهای دوره آماری بیش از 400 واحد افزایش یافته است. این موضوع نشان دهنده افت شدید کیفیت آب در این دوره در عمده بخش­های دشت است. نتایج حاصل از نقشه هم تغییر عمق آب زیرزمینی حاکی از آن است که بهجز بخش بسیار کوچکی در قسمت­های میانی دشت در سایر نقاط دشت شاهد افت بالای سطح آب زیرزمینی می­باشیم که میزان این افت در غربیترین نقطه دشت حتی به میزان حدود 52 متر رسیده است و در سایر نقاط دشت بهطور متوسط به افت 9/8 متری میرسد.
نتیجهگیری: نتایج حاصل از تحقیق حاضر نشان می­‌دهد که در بخش بسیار کوچکی از جنوب دشت کیفیت آب زیرزمینی جهت مصارف شرب خوب میباشد و به جز این بخش در سایر نقاط دشت کیفیت آب زیرزمینی جهت مصارف شرب نامناسب میباشد. اضافه برداشت و افت سطح ایستابی آبخوان موجب بالاآمدگی آب شور و تداخل سفره آب شور و شیرین در تمام نواحی دشت بویژه نواحی مرکزی آن شده که ادامه این روند میتواند در آیندهای نه چندان دور شوری آبخوان را بهحدی بالا ببرد که تمام فعالیتهای کشاورزی و دامپروی منطقه را نیز نابود کند. همچنین در بخش مطالعه کمی آب زیرزمینی، نتایج حاکی از روند شدید و فزاینده میزان بهرهبرداری و در نتیجه کاهش سطح آب زیرزمینی است.
متن کامل [PDF 2003 kb]   (404 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: هيدرولوژی
دریافت: 1401/12/14 | پذیرش: 1402/5/15

فهرست منابع
1. Abbasi, Z., Azimzadeh, H., Talebi, A., & Sotoudeh, A. (2019). Evaluating quality of Ajabshir groundwater resources based on Groundwater Quality Indicator (GQI) and geographical information system. Journal of Water and Soil Science, 22(4), 99-108. [DOI:10.29252/jstnar.22.4.99]
2. Abbasnia, A., Radfard, M., Mahvi, A. H., Nabizadeh, R., Yousefi, M., Soleimani, H., & Alimohammadi, M. (2018). Groundwater quality assessment for irrigation purposes based on irrigation water quality index and its zoning with GIS in the villages of Chabahar, Sistan and Baluchistan, Iran. Data in brief, 19, 623-631. [DOI:10.1016/j.dib.2018.05.061]
3. Adhikary, P. P., Chandrasekharan, H., Chakraborty, D., & Kamble, K. (2010). Assessment of groundwater pollution in West Delhi, India using geostatistical approach. Environmental Monitoring and Assessment, 167, 599-615. [DOI:10.1007/s10661-009-1076-5]
4. Alharbi, T. (2023). Mapping of Groundwater, Flood, and Drought Potential Zones in Neom, Saudi Arabia, Using GIS and Remote Sensing Techniques. Water, 15(5), 966. [DOI:10.3390/w15050966]
5. asadi Nalivan, O., Sadoddin, A., Karami, G., & Sheikh, V. (2020). Identification of Groundwater Potential Zones using Geographic Information System and Analytical Hierarchy Process (AHP) (Case Study: Hable-rud River Basin-Iran) [Research]. Journal of Watershed Management Research, 11(21), 36-47. https://doi.org/10.52547/jwmr.11.21.36 [DOI:10.52547/jwmr.11.21.36 (In Persian).]
6. Babiker, I. S., Mohamed, M. A., & Hiyama, T. (2007). Assessing groundwater quality using GIS. Water Resources Management, 21, 699-715. [DOI:10.1007/s11269-006-9059-6]
7. Cambardella, C. A., Moorman, T., Novak, J., Parkin, T., Karlen, D., Turco, R., & Konopka, A. (1994). Field‐scale variability of soil properties in central Iowa soils. Soil science society of America journal, 58(5). 1501-1511. DOI: 10.2136/sssaj1994.03615995005800050033x [DOI:10.2136/sssaj1994.03615995005800050033x]
8. Company, R. W. (2008). The Water Appearance of Kerman Province, Iran.
9. Delbari, M., Amiri, M., & Motlagh, M. B. (2016). Assessing groundwater quality for irrigation using indicator kriging method. Applied Water Science, 6, 371-381. [DOI:10.1007/s13201-014-0230-6]
10. Delgado, C., Pacheco, J., Cabrera, A., Batllori, E., Orellana, R., & Bautista, F. (2010). Quality of groundwater for irrigation in tropical karst environment: The case of Yucatan, Mexico. Agricultural water management, 97(10), 1423-1433. [DOI:10.1016/j.agwat.2010.04.006]
11. Farid, H. U., Ayub, H. U., Khan, Z. M., Ahmad, I., Anjum, M. N., Kanwar, R. M. A., . . . Sakinder, P. (2022). Groundwater quality risk assessment using hydro-chemical and geospatial analysis. Environment, Development and Sustainability, 1-23. DOI: 10.1007/s10668-022-02403-6 [DOI:10.1007/s10668-022-02403-6]
12. Foster, S., Garduno, H., Kemper, K., Tuinhof, A., Nanni, M., & Dumars, C. (2003). Groundwater quality protection: defining strategy and setting priorities. GW Mate briefing note series ; no. 8 Washington, D.C. World Bank Group.
13. Gharbia, A. S., Gharbia, S. S., Abushbak, T., Wafi, H., Aish, A., Zelenakova, M., & Pilla, F. (2016). Groundwater quality evaluation using GIS based geostatistical algorithms. Journal of Geoscience and Environment Protection, 4(2), 89-103. http://dx.doi.org/10.4236/gep.2016.42011 [DOI:10.4236/gep.2016.42011]
14. Hassani Pak, A. (2005). Geostatistics. University of Tehran Press. Tehran.
15. Issak, E. H. S., R. M. (1989). An Introduction to Applied Geostatistics. Oxford University Press. Oxford.
16. Khan, H. H., Khan, A., Ahmed, S., & Perrin, J. (2011). GIS-based impact assessment of land-use changes on groundwater quality: study from a rapidly urbanizing region of South India. Environmental Earth Sciences, 63, 1289-1302. DOI: 10.1007/s12665-010-0801-2 [DOI:10.1007/s12665-010-0801-2]
17. Loucks, D. P., Stedinger, J. R., & Haith, D. A. (1981). Water Resources Systems Planning and Analysis (First Edition ed.). Prentice Hall.
18. Lumb, A., Sharma, T., & Bibeault, J. F. (2011). A review of genesis and evolution of water quality index (WQI) and some future directions. Water Quality, Exposure and Health, 3, 11-24. [DOI:10.1007/s12403-011-0040-0]
19. Mehrjardi, R. T., Jahromi, M. Z., Mahmodi, S., & Heidari, A. (2008). Spatial distribution of groundwater quality with geostatistics (case study: Yazd-Ardakan plain). World Applied Sciences Journal, 4(1), 9-17.
20. Moghaddasi, M., Mardiyan, M., & Parsa, M. (2021). Comparison and Assessment of Intelligent and Geostatistical Models for Analysis of Spatial Variations of Groundwater Quality (Komijan Plain) [Research]. Journal of Watershed Management Research, 12(24), 54-64. https://doi.org/10.52547/jwmr.12.24.54 [DOI:10.52547/jwmr.12.24.54 (in Persian).]
21. Mohammadi, S., Salajegheh, A., Mahdavi, M., & Bagheri, R. (2012). An ivestigation on spatial and temporal variations of groundwater level in Kerman plain using suitable geostatistical method (During a 10-year period). Iranian Journal of Range and Desert Research, 19(1), 60-71. [DOI:10.22092/ijrdr.2012.103069]
22. Nakhaie Sarvedani, B., Jahanshahi, R., & Assari, A. (2022). Determining the best places for dewatering wells in the Gohar-Zamin pit mine, using geostatistical methods. Geopersia, 12(2), 287-298. [DOI:10.22059/geope.2022.339672.648651]
23. Nezhadi, L., Shahnazari, A., Azimi, M., & Yasobi, S. (2022). Investigation of Water Quality of Fish Farming Ab-Bandans and Its Effect on Groundwater in Mazandaran Province [Research]. Journal of Watershed Management Research, 13(26), 135-145. https://doi.org/10.52547/jwmr.13.26.135 [DOI:10.52547/jwmr.13.26.135 (In Persian).]
24. Piri, H., & Bameri, A. (2014). Investigating the quantity variation trend of ground water table using geostatistics and GIS (Case study: Sirjan Plain). Journal of RS and GIS for Natural Resources, 5(1), 29-44. DOI: 10.52547/jwmr.13.26.58 [DOI:10.52547/jwmr.13.26.58]
25. Piri, H., Mobaraki, M., & Siasar, S. (2022). Temporal and Spatial Modeling of Groundwater Level in Bushehr Plain using Artificial Intelligence and Geostatistics [Research]. Journal of Watershed Management Research, 13(26), 58-68. https://doi.org/10.52547/jwmr.13.26.58 [DOI:10.52547/jwmr.13.26.58 (In Persian).]
26. Potop, V., & Možný, M. (2011). The application a new drought index-Standardized precipitation evapotranspiration index in the Czech Republic. Mikroklima a mezoklima krajinných structur a antropogenních prostředí, 2(4), 1-12.
27. Ram, A., Tiwari, S., Pandey, H., Chaurasia, A. K., Singh, S., & Singh, Y. (2021). Groundwater quality assessment using water quality index (WQI) under GIS framework. Applied Water Science, 11, 1-20. [DOI:10.1007/s13201-021-01376-7]
28. Ravi, R., Aravindan, S., Shankar, K., & Balamurugan, P. (2020). Suitability of groundwater quality for irrigation in and around the main Gadilam river basin on the east coast of southern India. Archives of Agriculture and Environmental Science, 5(4), 554-562. [DOI:10.26832/24566632.2020.0504019]
29. Roodgar Iraee, R., Gholami Sefidkohi, M. A., & Palangi, J. A. (2019). Comparison of Deterministic and Geomorphic Methods for Determining Spatial Variations of Nitrate in Ghaemshahr-Juybar Plan. Journal of Watershed Management Research, 10(20), 158-167. DOI: 10.29252/jwmr.10.20.158 (In Persian). [DOI:10.29252/jwmr.10.20.158]
30. Safari, M. (2002). Determination filtration network of Groundwater using geostatistic method. Tarbiyat Modares University, Tehran.
31. Salajeghe, A., Salajeghe, A., Baniasadi, A., Abkar, A., & Rafsanjani, A. (2010, 2010). Investigating the factors affecting on quantitative changes of groundwater table in Bam- Narmashir plain using software GS+ Proceedings of the 6th National Conference on Watershed Management Science and Engineering of Iran,
32. Shahzad, H., Farid, H. U., Khan, Z. M., Anjum, M. N., Ahmad, I., Chen, X., . . . & Gulakhmadov, A. (2020). An integrated use of gis, geostatistical and map overlay techniques for spatio-temporal variability analysis of groundwater quality and level in the punjab province of pakistan, south asia. Water, 12(12), 3555. DOI: 10.3390/w12123555 [DOI:10.3390/w12123555]
33. Singh, K. K., Tewari, G., Kumar, S., Busa, R., Chaturvedi, A., Rathore, S. S., . . . & Gangwar, A. (2023). Understanding urban groundwater pollution in the Upper Gangetic Alluvial Plains of northern India with multiple industries and their impact on drinking water quality and associated health risks. Groundwater for Sustainable Development, 21, 100902. [DOI:10.1016/j.gsd.2023.100902]
34. Theodoridou, P., Varouchakis, E., & Karatzas, G. (2017). Spatial analysis of groundwater levels using fuzzy logic and geostatistical tools. Journal of Hydrology, 555, 242-252. https://doi. org/ 10. 016/ j.jhydrol.2017.10.027. [DOI:10.1016/j.jhydrol.2017.10.027]
35. Todd, D. K., & Mays, L. W. (2004). Groundwater hydrology. John Wiley & Sons. New York. WHO. (2011). Guidelines for drinking-water quality. WHO chronicle, 38(4), 104-108.
36. Yektaparast Moafegh, N. A., Amiri, E. (2016). Evaluation of groundwater quality parameters in Gilan province using Geostatistics and Gs+ software (case study: West Gilan plain) 5th International Conference on Research in Science and Technology, London, United Kingdom. 644-657.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb