1. Birgand, F., Chapman, K., Hazra, A., Gilmore, T., Etheridge, R., & Staicu, A. M. (2022). Field performance of the GaugeCam image-based water level measurement system. PLoS Water, 1(7). [
DOI:10.1371/journal.pwat.0000032]
2. Choi, C., Kim, J., Han, H., Han, D., & Kim, H. S. (2019). Development of water level prediction models using machine learning in wetlands: A case study of Upo wetland in South Korea. Water, 12(1), 93. [
DOI:10.3390/w12010093]
3. Chen, Y., Song, L., Liu, Y., Yang, L., & Li, D. (2020). A review of the artificial neural network models for water quality prediction. Applied Sciences, 10(17), 5776. [
DOI:10.3390/app10175776]
4. Choubin, M., & Bashirgonbad, M. (2023). Evaluation of IHACRES, Conceptual Rainfall Runoff Model and Artificial Neural Network Models in Simulation and Stream flow Prediction in Bakhtiary River Basin. Journal of Watershed Management Research, 14(27), 115-122. [In Persian] [
DOI:10.61186/jwmr.14.27.115]
5. Dou, G., Chen, R., Han, C., Liu, Z., & Liu, J. (2022). Research on water-level recognition method based on image processing and convolutional neural networks. Water, 14(12), 1890. [
DOI:10.3390/app10175776]
6. Elias, M., & Maas, H. G. (2022). Measuring Water Levels by Handheld Smartphones: A contribution to exploit crowdsourcing in the spatio-temporal densification of water gauging networks. The International Hydrographic Review, (27), 9-22. https://journals.lib.unb.ca/index.php/ihr/article/view/33130 [
DOI:10.58440/ihr-27-a01]
7. Fleury, G. R. D. O., do Nascimento, D. V., Galvão Filho, A. R., Ribeiro, F. D. S. L., de Carvalho, R. V., & Coelho, C. J. (2020). Image-Based River Water Level Estimation for Redundancy Information Using Deep Neural Network. Energies, 13(24), 6706. [
DOI:10.3390/en13246706]
8. Gao, A., Wu, S., Wang, F., Wu, X., Xu, P., Yu, L., & Zhu, S. (2019). A newly developed unmanned aerial vehicle (UAV) Imagery based technology for field measurement of water level. Water, 11(1), 124. [
DOI:10.3390/w11010124]
9. Gu, M., Su, B., Wang, M., & Wang, Z. (2019). Survey on decolorization methods. Applied Research Computing, 36, 1286-1292.
10. Heddam, S. (2014). Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS)-based approach: case study of Klamath River at Miller Island Boat Ramp, OR, USA. Environmental Science and Pollution Research, 21(15), 9212-9227. [
DOI:10.1007/s11356-014-2842-7]
11. Heydarzadeh, M. (2023). Evaluation of the correlation of plant indices with meteorological and biological variables using Google Earth Engine system. Journal of Water and Soil Conservation Research, 30(2), 1-26. doi: 10.22069/jwsc.2023.20667.3584
12. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. [
DOI:10.1145/3065386]
13. Kharade, A., Gendle, M., & Lodha, T. (2017). Water level measurement and detection of flow direction using image processing. International Journal of Innovations in Engineering Research and Technology, 1-4.
14. Kumar, T., & Verma, K. (2010). A Theory Based on Conversion of RGB image to gray image. International Journal of Computer Applications, 7(2), 7-10. [
DOI:10.5120/777-1099]
15. Kwon, S. H., Ha, C., & Lee, S. (2023). A study on the application of the agricultural reservoir water level recognition model using CCTV image data. Journal of Korea Water Resources Association, 56(4), 245-259. [
DOI:10.3741/JKWRA.2023.56.4.245]
16. Loke, E., Warnaars, E. A., Jacobsen, P., Nelen, F., & do Ceu Almeida, M. (1997). Artificial neural networks as a tool in urban storm drainage. Water Science and Technology, 36(8-9), 101-109. [
DOI:10.1016/S0273-1223(97)00612-4]
17. Liu, S., Yan, M., Tai, H., Xu, L., & Li, D. (2012). Prediction of dissolved oxygen content in aquaculture of Hyriopsis cumingii using Elman neural network. In Computer and Computing Technologies in Agriculture V: 5th IFIP TC 5/SIG 5.1 Conference, CCTA 2011, Beijing, China, October 29-31, 2011, Proceedings, Part III 5, 508-518. [
DOI:10.1007/978-3-642-27275-2]
18. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
https://doi.org/10.1038/nature14539 [
DOI:10.1038/nature14539.]
19. Maier, H. R., & Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling & Software, 15(1), 101-124. [
DOI:10.1016/S1364-8152(99)00007-9]
20. Muhadi, N. A., Abdullah, A. F., Bejo, S. K., Mahadi, M. R., & Mijic, A. (2021). Deep learning semantic segmentation for water level estimation using surveillance camera. Applied Sciences, 11(20), 9691. [
DOI:10.3390/app11209691]
21. Noto, S., Tauro, F., Petroselli, A., Apollonio, C., Botter, G., & Grimaldi, S. (2022). Low-cost stage-camera system for continuous water-level monitoring in ephemeral streams. Hydrological Sciences Journal, 67(9), 1439-1448. [
DOI:10.1080/02626667.2022.2079415]
22. Ortigossa, E. S., Dias, F., Ueyama, J., & Nonato, L. G. (2015). Using digital image processing to estimate the depth of urban streams. In Proceedings of the Workshop of Undergraduate Works in Conjunction with Conference on Graphics, Patterns and Images (SIBGRAPI), Bahia, Brazil (26-29).
23. Qiao, G., Yang, M., & Wang, H. (2022). A water level measurement approach based on YOlOv5s. Sensors, 22(10), 3714. [
DOI:10.3390/s22103714]
24. Rusk, N. (2016). Deep learning. Nature Methods, 13(1), 35-35. [
DOI:10.1038/nmeth.3707]
25. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1-9. [
DOI:10.1109/CVPR.2015.7298594]
26. Sabbatini, L., Palma, L., Belli, A., Sini, F., & Pierleoni, P. (2021). A Computer Vision System for Staff Gauge in River Flood Monitoring. Inventions, 6(4), 79. [
DOI:10.3390/inventions6040079]
27. Shirazi, F., Zahiri, A., Piri, J., Dehghani, A. A. (2023). Development a new hydraulic method for prediction of river flood discharge. Journal of Watershed Management Research, 14(28), 110-123. doi:10.61186/jwmr.14.28.110. [In Persian] [
DOI:10.61186/jwmr.14.28.110]
28. Vandaele, R., Dance, S. L., & Ojha, V. (2021). Deep learning for automated river-level monitoring through river-camera images: an approach based on water segmentation and transfer learning. Hydrology and Earth System Sciences, 25(8), 4435-4453. [
DOI:10.5194/hess-25-4435-2021]
29. won Seo, I., Yun, S. H., & Choi, S. Y. (2016). Forecasting water quality parameters by ANN model using pre-processing technique at the downstream of Cheongpyeong Dam. Procedia Engineering, 154, 1110-1115. [
DOI:10.1016/j.proeng.2016.07.519]
30. Wang, T. S., Tan, C. H., Chen, L., & Tsai, Y. C. (2008). Applying artificial neural networks and remote sensing to estimate chlorophyll-a concentration in water body. In 2008 Second International Symposium on Intelligent Information Technology Application, 540-544. [
DOI:10.1109/IITA.2008.279]
31. Zhang, Z., Zhou, Y., Liu, H., & Gao, H. (2019). In-situ water level measurement using NIR-imaging video camera. Flow Measurement and Instrumentation, 67, 95-106. [
DOI:10.1016/j.flowmeasinst.2019.04.004]