1. Arabkhedri, M. (2015). The possibility of estimation of long-term average annual erosion based on measurements of erosion from a few rainfall events. Extension and Development of Watershed Management, 3(11), 7-1. [In Persian]
2. Arabkhedri, M., Heidary, K., & Parsamehr, M. R. (2021). Relationship of sediment yield to connectivity index in small watersheds with similar erosion potentials. Journal of Soils and Sediments, 21(7), 2699- 2708. [
DOI:10.1007/s11368-021-02978-z]
3. Asadi, H., Shahidi, K., Sidel, R., & Kelami Harris, S. M. (2018). Prediction of suspended sediment using hydrological and hydrogeomorphic data in intelligent models. Iran Water Resources Research, 15(3), 105-119. [In Persian]
4. Baartman, J. E., Masselink, R., Keesstra, S. D., & Temme, A. J. (2013). Linking landscape morphological complexity and sediment connectivity. Earth Surface Processes and Landforms, 38(12), 1457-1471. [
DOI:10.1002/esp.3434]
5. Borrelli, P., Alewell, C., Alvarez, P., Anache, J. A. A., Baartman, J., Ballabio, C., & Panagos, P. (2021). Soil erosion modelling: A global review and statistical analysis. Science of the Total Environment, 780, 146494. [
DOI:10.1016/j.scitotenv.2021.146494]
6. Borselli, L., Cassi, P., & Torri, D. (2008). Prolegomena to sediment and flow connectivity in the landscape: a GIS and field numerical assessment. Catena, 75:268-277. [
DOI:10.1016/j.catena.2008.07.006]
7. Bracken, L. J., & Croke, J. (2007). The concept of hydrological connectivity and its contribution to understanding runoff dominated geomorphic systems. Hydrological Processes, 21(13), 1749-1763. [
DOI:10.1002/hyp.6313]
8. Bracken, L. J., Turnbull, L., Wainwright, J., & Bogaart, P. (2015). Sediment connectivity: a framework for understanding sediment transfer at multiple scales. Earth Surface Processes and Landforms, 40(2), 177-188. [
DOI:10.1002/esp.3635]
9. Caine, N., & Swanson, F. (2013). Geomorphic coupling of hillslope and channel systems in two small mountain basins. Geomorphology: Critical Concepts in Geography. Routledge, Oxon, 159-173.
10. Calsamiglia, A., García-Comendador, J., Fortesa, J., López-Tarazón, J. A., Crema, S., Cavalli, M., Calvo-Cases, A., & Estrany, J. )2018(. Effects of agricultural drainage systems on sediment connectivity in a small Mediterranean lowland catchment. Geomorphology, 318, 162-171. [
DOI:10.1016/j.geomorph.2018.06.011]
11. Casalí, J., Giménez, R., Díez, J., Álvarez-Mozos, J., Del Valle de Lersundi, J., Goñi,M., Campo, M. A., Chahor, Y., Gastesi, R., & López, J. )2010(. Sediment production and water quality of watersheds with contrasting land use in Navarre (Spain). Agricultural Water Management, 97, 1683-1694. [
DOI:10.1016/j.agwat.2010.05.024]
12. Cavalli, M., Trevisani, S., Comiti, F., & Marchi, L. (2013). Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology, 188, 31-41. [
DOI:10.1016/j.geomorph.2012.05.007]
13. Cavalli, M., Vericat, D., & Pereira, P. (2019). Mapping water and sediment connectivity. Science of the Total Environment, 673, 763-767. [
DOI:10.1016/j.scitotenv.2019.04.071]
14. Chen, C., Zhao, G., Zhang, Y., Bai, Y., Tian, P., Mu, X., & Tian, X. (2023). Linkages between soil erosion and long-term changes of landscape pattern in a small watershed on the Chinese Loess Plateau. Catena, 220, 106659. [
DOI:10.1016/j.catena.2022.106659]
15. Ciampalini, R., Billi, P., Ferrari, G., Borselli, L., & Follain, S. (2012). Soil erosion induced by land use changes as determined by plough marks and field evidence in the Aksum area (Ethiopia). Agriculture, Ecosystems & Environment, 146(1), 197-208. [
DOI:10.1016/j.agee.2011.11.006]
16. Cossart, É., & Fressard, M. (2017). Assessment of structural sediment connectivity within catchments: insights from graph theory. Earth Surface Dynamics, 5(2), 253-268. [
DOI:10.5194/esurf-5-253-2017]
17. Da Silva, J. L. B., de Albuquerque Moura, G. B., da Silva, M. V., Lopes, P. M. O., de Souza Guedes, R. V., e Silva, Ê. F. D. F., & de Moraes Rodrigues, J. A. (2020). Changes in the water resources, soil use and spatial dynamics of Caatinga vegetation cover over semiarid region of the Brazilian Northeast. Remote Sensing Applications: Society and Environment, 20, 100372. [
DOI:10.1016/j.rsase.2020.100372]
18. Davudirad, A. A., Sadeghi, S. H. R., & Sadoddin, A. (2016). The impact of development plans on hydrological changes in the Shazand Watershed, Iran. Land Degradation & Development, 27(4), 1236-1244. [
DOI:10.1002/ldr.2523]
19. Dunkerley, D. L. (2019). Rainfall intensity bursts and the erosion of soils: An analysis highlighting the need for high temporal resolution rainfall data for research under current and future climates. Earth Surface Dynamics, 7(2), 345-360. [
DOI:10.5194/esurf-7-345-2019]
20. Faulkner, H. (2008). Connectivity as a crucial determinant of badland morphology and evolution. Geomorphology, 100(1-2), 91-103. [
DOI:10.1016/j.geomorph.2007.04.039]
21. Fenta, A. A., Tsunekawa, A., Haregeweyn, N., Poesen, J., Tsubo, M., Borrelli, P., & Kurosaki, Y. (2020). Land susceptibility to water and wind erosion risks in the East Africa region. Science of the Total Environment, 703, 135016. [
DOI:10.1016/j.scitotenv.2019.135016]
22. Fryirs, K. (2013). (Dis) Connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem. Earth Surface Processes and Landforms, 38(1), 30-46. [
DOI:10.1002/esp.3242]
23. Garosi, Y., Sheklabadi, M., Conoscenti, C., Pourghasemi, H. R., & Van Oost, K. (2019). Assessing the performance of GIS-based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Science of the Total Environment, 664, 1117-1132. [
DOI:10.1016/j.scitotenv.2019.02.093]
24. Gay, A., Cerdan, O., Mardhel, V., & Desmet, M. (2016). Application of an index of sediment connectivity in a lowland area. Journal of Soils and Sediments, 16, 280-293. [
DOI:10.1007/s11368-015-1235-y]
25. Gerami, Z., Arabkhedri, M., Karimi, A., & Asadi, H. (2022a). A review of the basics and application of sediment connectivity index in soil erosion studies. Iran Water and Soil Research, 53(9), 2191-2208 [In Persian]
26. Gerami, Z., Arabkhedri, M., Karimi, A., & Asadi, H. (2022b). An appropriate weighting factor for calculating sediment connectivity index in bare tilled soils. Watershed Management Research Journal, 35(3), 114-130 [In Persian]
27. Gonzalez-Ollauri, A., & Mickovski, S. B. (2017). Plant-soil reinforcement response under different soil hydrological regimes. Geoderma, 285, 141-150. [
DOI:10.1016/j.geoderma.2016.10.002]
28. Hao, R., Huang, X., Cai, Z. W., Xiao, H. B., Wang, J., & Shi, Z. H. (2022). Incorporating sediment connectivity index into MUSLE model to explore soil erosion and sediment yield relationships at event scale. Journal of Hydrology, 614, 128579. [
DOI:10.1016/j.jhydrol.2022.128579]
29. Heckmann, T., & Schwanghart, W. (2013). Geomorphic coupling and sediment connectivity in an alpine catchment-Exploring sediment cascades using graph theory. Geomorphology, 182, 89-103. [
DOI:10.1016/j.geomorph.2012.10.033]
30. Heckmann, T., Cavalli, M. Cerdan, O. Foerster, S. Javaux, M. Lode, E. Smetanová, A. Vericat, D., & Brardinoni, F. (2018). Indices of sediment connectivity: opportunities, challenges and limitations. Earth-Science Reviews, 187, 77-108. [
DOI:10.1016/j.earscirev.2018.08.004]
31. Hilo, M. A., Hosseini, S. A., Shrafati, A. (2022). Spatial pattern of sediment production using structural model of sediment connection in Taleghan watershed, Iran. Protection of Water and Soil Resources, 12(3), 51-64 [In Persian].
32. Jain, V., & Tandon, S. K. (2010). Conceptual assessment of (dis) connectivity and its application to the Ganga River dispersal system. Geomorphology, 118, 349-358. [
DOI:10.1016/j.geomorph.2010.02.002]
33. Jing, Y., Zhao, Q., Lu, M., Wang, A., Yu, J., Liu, Y., & Ding, S. (2022). Effects of road and river networks on sediment connectivity in mountainous watersheds. Science of the Total Environment, 826, 154189. [
DOI:10.1016/j.scitotenv.2022.154189]
34. Katebi Kord, A., Sadeghi, S. H. R., Singh, V. P. (2023). Effects of different methods for calculation of topographic factor on precision of storm-wise soil loss estimation. JWMR, 14(28), 1-13 [In Persian] [
DOI:10.61186/jwmr.14.28.1]
35. Kayhan-Panah, M., Najafinjad, A., Pourqasmi, H., & Mohammadian Behbahani, A. (2022). Comparison and evaluation of spatial changes of sediment connectivity and sediment delivery ratio in Marcheshme watershed (Semnan province). Iran Soil and Water Research, 53(11), 2655-2670 [In Persian]
36. Kiani-Harchegani, M., & Sadeghi, S. H. (2020). Practicing land degradation neutrality (LDN) approach in the Shazand Watershed, Iran. Science of the Total Environment, 698, 134319. [
DOI:10.1016/j.scitotenv.2019.134319]
37. Keesstra, S. D., Kondrlova, E., Czajka, A., Seeger, M., & Maroulis, J. (2012). Assessing riparian zone impacts on water and sediment movement: a new approach. Netherland Journal of Geosci, 91(1-2), 245-255. [
DOI:10.1017/S0016774600001633]
38. Keesstra, S. D., Nunes, J. P., Saco, P., Parsons, T., Poeppl, R., Masselink, R., & Cerdà, A. (2018). The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics?. Science of the Total Environment, 644, 1557-1572. [
DOI:10.1016/j.scitotenv.2018.06.342]
39. Keesstra, S. D., van Dam, O., Verstraeten, G., & van Huissteden, J. (2009). Changing sediment dynamics due to natural reforestation in the Dragonja catchment, SW Slovenia. Catena, 78, 60-71. [
DOI:10.1016/j.catena.2009.02.021]
40. Kollongei., K. J., & Lorentz, S. A. (2014). Connectivity influences on nutrient and sediment migration in the Wartburg catchment, KwaZulu-Natal Province, South Africa. Physics and Chemistry of the Earth, 67, 12-22. [
DOI:10.1016/j.pce.2014.01.002]
41. La Licata, M., Bosino, A., Bettoni, M., & Maerker, M. (2023). Assessing landscape features and geomorphic processes influencing sediment dynamics in a geomorphologically highly active Mediterranean agroecosystem: The upper Val d'Arda case study (Northern Apennines, Italy). Geomorphology, 433, 108724. [
DOI:10.1016/j.geomorph.2023.108724]
42. Lisenby, P. E., Fryirs, K. A., & Thompson, C. J. (2020). River sensitivity and sediment connectivity as tools for assessing future geomorphic channel behavior. International Journal of River Basin Management, 18(3), 279-293. [
DOI:10.1080/15715124.2019.1672705]
43. Liu, W., Shi, C. Ma, Y., & Wamg, Y. (2022). Evaluating sediment connectivity and its effects on sediment reduction in a catchment on the Loess Plateau, China. Geoderma, 408, 115566. [
DOI:10.1016/j.geoderma.2021.115566]
44. López-Vicente, M., Kramer, H., & Keesstra, S. D. (2021). Effectiveness of soil erosion barriers to reduce sediment connectivity at small basin scale in a fire-affected forest. Journal of Environmental Management, 278, 111510. [
DOI:10.1016/j.jenvman.2020.111510]
45. López‐Vicente, M., Nadal‐Romero, E., & Cammeraat, E. L. (2017). Hydrological connectivity does change over 70 years of abandonment and afforestation in the Spanish Pyrenees. Land Degradation & Development, 28(4), 1298-1310. [
DOI:10.1002/ldr.2531]
46. Mao, L., Cavalli, M., Comiti, F., Marchi, L., Lenzi, M. A., & Arattano, M. (2009). Sediment transfer processes in two Alpine catchments of contrasting morphological settings. Journal of Hydrology, 364(1-2), 88-98. [
DOI:10.1016/j.jhydrol.2008.10.021]
47. McCool, D. K., & Williams, J. D. (2008). Soil Erosion by Water. Encyclopedia of Ecology, 3284-3290. [
DOI:10.1016/B978-008045405-4.00296-2]
48. Messenzehl, K., Hoffmann, T., & Dikau, R. (2014). Sediment connectivity in the high-alpine valley of Val Müschauns, Swiss National Park-linking geomorphic field mapping with geomorphometric modelling. Geomorphology, 221, 215-229. [
DOI:10.1016/j.geomorph.2014.05.033]
49. Mirchooli, F., Sadeghi, S. H. R., & Khaledi Darvishan, A. (2022). Comparative analysis of the effect of different algorithms for calculating the topographic factor on the amount and spatial distribution of soil erosion in the Shazand Watershed, Iran. Watershed Engineering and Management, 14(2), 232-242. [In persian]
50. Najafi, S., Dragovich, D., Heckmann, T., & Sadeghi, S. H. R. (2021). Sediment connectivity concepts and approaches. Catena, 196, 104880. [
DOI:10.1016/j.catena.2020.104880]
51. Najafi, S., Sadeghi, S. H. R., & Hackman, T. (2017). Temporal and spatial changes of sediment structural connection pattern in Tehamchai Zanjan watershed. Journal of Water and Soil Protection Research, 24(3), 131-147[In Persian]
52. Persichillo, M. G., Bordoni, M., Cavalli, M., Crema, S., & Meisina, C. (2018). The role of human activities on sediment connectivity of shallow landslides. Catena, 160, 261-274. [
DOI:10.1016/j.catena.2017.09.025]
53. Persichillo, M. G., Bordoni, M., Meisina, C., Bartelletti, C., Barsanti, M., Giannecchini, R., D'Amato Avanzi, G., Galanti, Y., Cevasco, A., Brandolini, P., & Galve, J. P., (2017). Shallow landslides susceptibility assessment in different environments. Geomatics, Natural Hazards and Risk, 8, 748-771. [
DOI:10.1080/19475705.2016.1265011]
54. Poeppl, R. E., Fryirs, K. A., Tunnicliffem, J., & Brierley, G. J. (2020). Managing sediment (dis)connectivity in fluvial systems. Science of the Total Environment, 736, 139627. [
DOI:10.1016/j.scitotenv.2020.139627]
55. Poesen, J. (2018). Soil erosion in the anthropocene: research needs. Earth Surface Processes and Landforms, 43, 64-84. [
DOI:10.1002/esp.4250]
56. Sadeghi, S. H. R., Jafarpoor, A., Zabihi Silabi, M., Molashahi, S., Naghdi, M., Sharifi Moghani, M., Ghysoori, Z., & Farzadfar, E. (2021). Biologic Management Framework of Soil Erosion in the Watershed (Applied study: Oshnavieh Galazchai, West Azerbaijan, Iran). Soil and Water Research, 52(4), 997-1010 [In Persian].
57. Sadeghi, S. H. R., Zabihi Silabi, M., & Vafakhah, M. (2024). Prioritization of the sub-watersheds based on the dynamic changes of the watershed using the game theory approach. Advances in Space Research, 73(12), 5822-5835. [
DOI:10.1016/j.asr.2024.03.001]
58. Sadeghi, S. H. R., Zabihi Silabi, M., Katebi Kord, A., & Mostafazadeh, R. (2022). Soil Erosion dynamic on storm-basis due to land use correction in the high priority sub-watersheds of the Galazchai Watershed, West Azerbaijan, Iran. Watershed Management Research, 13(26), 21-33, [In Persian] [
DOI:10.52547/jwmr.13.26.21]
59. Sahour, H., Gholami, V., Vazifedan, M., & Saeedi, S. (2021). Machine learning applications for water-induced soil erosion modeling and mapping. Soil and Tillage Research, 211, 105032. [
DOI:10.1016/j.still.2021.105032]
60. Sun, W., Mu, X., Gao, P., Zhao, G., Li, J., Zhang, Y., & Chiew, F. (2019). Landscape patches influencing hillslope erosion processes and flow hydrodynamics. Geoderma, 353, 391-400. [
DOI:10.1016/j.geoderma.2019.07.003]
61. Wainwright, J., Turnbull, L., Ibrahim, T.G., Lexartza-Artza, I., Thornton, S. F., & Brazier, R. E. (2011). Linking environmental regimes, space and time: Interpretations of structural and functional connectivity. Geomorphology, 126(3-4), 387-404. [
DOI:10.1016/j.geomorph.2010.07.027]
62. Wang, C., & Zhang, G. (2022). Spatial variation in sediment connectivity of small watershed along a regional transect on the loess plateau. Catena, 217, 106473. [
DOI:10.1016/j.catena.2022.106473]
63. Wang, H., & Zhang, G. H. (2021). Temporal variation in soil erodibility indices for five typical land use types on the Loess Plateau of China. Geoderma, 381, 114695. [
DOI:10.1016/j.geoderma.2020.114695]
64. Wang, H., Zhang, G. H., Li, N. N., Zhang, B. J., & Yang, H. Y. (2019). Variation in soil erodibility under five typical land uses in a small watershed on the Loess Plateau, China. Catena, 174, 24-35. [
DOI:10.1016/j.catena.2018.11.003]
65. Ward, P. J., van Balen, R. T., Verstraeten, G., Renssen, H., & Vandenberghe, J. (2009). The impact of land use and climate change on late Holocene and future suspended sediment yield of the Meuse catchment. Geomorphology, 103, 389-400. [
DOI:10.1016/j.geomorph.2008.07.006]
66. Wohl, E., Brierley, G., Cadol, D., Coulthard, T. J., Covino, T., Fryirs, K. A., & Meitzen, K. M. (2019). Connectivity as an emergent property of geomorphic systems. Earth Surface Processes and Landforms, 44(1), 4-26. [
DOI:10.1002/esp.4434]
67. Yan, X., Jiao, J., Jiang, X., Xu, Q., Li, M., Zhang, Z., & Yang, L. (2024). Rainfall characteristics of sediment connectivity activation from plot to watershed scales on the Loess Plateau. Catena, 235, 107654. [
DOI:10.1016/j.catena.2023.107654]
68. Zanandrea, F., Michel, G. P., & Kobiyama, M. (2020). Impedance influence on the index of sediment connectivity in a forested mountainous catchment. Geomorphology, 351, 106962. [
DOI:10.1016/j.geomorph.2019.106962]
69. Zhang, Y., Huang, C., Zhang, W., Chen, J., & Wang, L. (2021). The concept, approach, and future research of hydrological connectivity and its assessment at multiscales. Environmental Science and Pollution Research, 28, 52724-52743. [
DOI:10.1007/s11356-021-16148-8]
70. Zhao, G., Gao, P., Tian, P., Sun, W., Hu, J., & Mu, X. (2020). Assessing sediment connectivity and soil erosion by water in a representative catchment on the Loess Plateau, China. Catena, 185, 104284. [
DOI:10.1016/j.catena.2019.104284]
71. Zingaro, M., Refice, A., Giachetta, E., D'Addabbo, A., Lovergine, F., De Pasquale, V., & Capolongo, D. (2019). Sediment mobility and connectivity in a catchment: A new mapping approach. Science of the Total Environment, 672, 763-77. [
DOI:10.1016/j.scitotenv.2019.03.461]
72. Zoratipour, A., & Hydari, K. (2022). Monitoring of sediment cell changes in rivers, using basin structural connectivity index (Case study: AbolAbbas Basin in Khuzestan). Iranian Journal of Soil and Water Research, 53(6), 1213-1226.