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Extended Abstract

Background: Accurate river flow measurements are essential for effective water resource
management, flood mitigation, river conservation and restoration, and stream rehabilitation. The
majority of flood control and design flow strategies in river management and restoration
initiatives are derived from hydrological and hydraulic analyses based on observed river flow.
Hydrological investigations are fundamentally reliant on observational statistical data, which
frequently contain multiple errors. Outliers, which are defined as data points deviating
significantly from the norm, can introduce substantial calculation errors. Outlier detection
techniques include supervised, semi-supervised, and unsupervised approaches, which may
include distribution-based, clustering-based, and density-based methods. These errors can arise
from computational issues, misreporting, sampling inaccuracies, and human or instrumental
errors, leading to problems such as unrecorded data, incorrect values, equipment failure or loss,
and the misidentification of outliers as missing data. Consequently, the estimation and assessment
of these data are essential for their application in models, and to mitigate mistakes, preprocessing
must be performed before their utilization. Preprocessing methods prepare data series for
computations, such as classification, prediction, and estimation, and include the elimination of
missing data, removal of outliers, imputation of missing values, and data normalization.
Method: This study utilized flow and rainfall data from six hydrometeorological stations and 16
rain stations to identify outliers and impute missing or incomplete hydrological values. The data,
obtained from the Zarrineh-roud basin, were implemented using R software. The Zarrineh River
watershed constitutes the largest watershed of Lake Urmia. Normalization tests, including the
Shapiro-Wilk and Kolmogorov-Smirnov tests, were used to normalize the data, and the findings
indicated that the data did not conform to a normal distribution. Subsequent to data normalization,
outlier detection was executed using approaches including boxplot, z-score, histogram, chi-
square, mean and standard deviation, and median techniques. Values exceeding the established
maximum were removed. Missing values were imputed using K-Nearest Neighbor (KNN), Lasso
regression, and Bayesian linear regression. Lasso regression is a regularization technique
designed to diminish model complexity and avoid overfitting. Bayesian linear regression is a
statistical analysis method that integrates linear regression with Bayesian techniques. The KNN
algorithm is a sample-based method related to nonparametric models and supervised learning
classification. Cross-validation was used to assess the accuracy of the imputation methods, with
RMSE and R? serving as performance metrics.

Result: According to the results, P-values at all six study stations were less than 0.05. The cross-
validation approach was used to assess the accuracy and precision of the KNN, Lasso regression,
and linear Bayesian regression techniques. RMSE values near zero and R? values above 0.7 across
all stations indicated that KNN was a robust and accurate method for missing value imputation.
It provides significantly more accurate and reliable outcomes without reshaping the data series
trend than Lasso regression and Bayesian linear regression. Outliers were removed from the Jan-
Agha and Darreh Pandedan stations during normalization. Histogram analysis revealed skewness
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and outliers at the Jan-Agha, Sarigamish, and Pol-Anyan stations, indicating a heterogeneous and
non-normally distributed dataset. Outliers were identified and removed following normalization.
The Shapiro-Wilk and Kolmogorov-Smirnov tests yielded p-values significantly below 0.05 after
normalization, confirming a normal distribution. This suggests that the normalization process and
outlier removal were executed with precision, indicating the significan detection and estimation
of outliers. The Rosner test established the upper limit for each data series across two successive
tests, classifying values beyond this limit as outliers. The consistency of the probability density
functions between the observed and imputed values using the KNN method indicates an adequate
alignment of the two probability density functions. This method has proved effective in imputing
the maximum, average, and minimum values relative to the other two methods at the studied
stations.

Conclusion: The results of this investigation indicate that the boxplot identifies data values
outside the lines as outliers, leading to a substantial number of outliers being detected compared
to the other methods. Consequently, this method is considered unsuitable for outlier detection in
hydrological data. KNN proved highly effective for missing data imputation compared to Lasso
regression and Bayesian linear regression. This study involved normalizing the data series,
calculating the values of outliers, and employing the KNN algorithm to identify incomplete or
unmeasured and missing values. In datasets exhibiting little variation, KNN has high accuracy
and is regarded as one of the most valuable and dependable techniques for attributing and
imputing missing values. Cross-validation confirmed the performance of KNN, Lasso regression,
and Bayesian linear regression. KNN achieved R? values above 0.7 and RMSE values close to
zero. KNN outperformed the other two methods in estimating missing values in continuous and
discontinuous flow data. This effectiveness is attributed to KNN's ability to identify optimal
nearest neighbor values, making it suitable for accurate predictions, even during low flow periods.
The precision of KNN stems from its computational simplicity and high efficacy in calculating
and imputing missing values while preserving the integrity of the data series.

Keywords: Bayesian linear regression, K Nearest Neighbor, Lasso regression, Shapiro-Wilk test,
Zarrineh-roud basin
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Figure 2. Probability of distribution at the studied stations
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Table 4. Results of statistical tests in study area stations

Bl e Ubodis o ool ohass oy U pllas
Jan Agha Senteh Sarigamish Pol Adinan Dare Panbedan Nezam Abad
20.73 4.23 9.55 6.01 24.62 6.76 Mean (ko)
45.88 5.97 13.43 9.57 39.24 9.40 Std (jlee 3l 5il)
-4.98 -5.52 -10.64 -7.36 -30.8 -7.05 Min (sls)
15.16 9.48 18.05 12.64 50.24 11.59 Max (,Sls)
3.35 1.97 3.73 2.64 9.72 2.27 Med («le)
Q-Q plot
0.45 0.7 0.7 0.62 0.62 0.708 Min (slss)
3.38 0.62 0.62 0.56 0.59 0.67 1% quartile (s S)l)
0.34 0.37 0.43 0.35 0.37 0.47 Median (4Le)
0 0 0 0 0 0 Mean (,:55ke)
0.27 0.12 0.24 0.02 0.15 0.205 3" quartile (pgu 1)
6.03 4.31 4.27 5.70 4.91 4.69 Max (gSls)
-1.70 -3.08 -5.97 -4.1 -17.61 -4.02 Lower band (0l L)
11.88 7.04 13.38 9.38 37.05 8.56 Upper band (Y|, xl)
(e y2 sloosls aoMs) Summary of outliers

2 3 3 3 2 2 Min (slss)
16.5 26.25 19.5 17 19 30 1** quartile (J S,l)
53 58.5 63 63 56.5 75.5 Median (4il0)
58.59 57.82 55.04 60.6 50.82 68.71 Mean (ko)
104.5 86.5 85 85 73.75 99.75 34 quartile (pgw 5l
126 118 109 129 100 129 Max (Sls)
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Table 5. Normality test results in study area stations

ok o Ol ol g by 0 o plis
Jan Agha Senteh Sarigamish Pol Adinan Dare Panbedan Nezam Abad
Rosner test 1
20.73 423 9.55 6.01 24.62 6.76 Mean (ko)
45.88 5.97 13.43 9.57 39.24 9.40 Std (hre 31yl
297.41 30 66.97 60.66 217.51 50.89 Value (,ls40)
6.02 431 4.27 5.7 491 4.69 R+l
3.47 3.45 3.41 3.48 3.39 3.46 Lambda i+1
true true true true true true Outlier (. 03l5)
Rosner test 2
18.63 4.02 9.02 5.60 22.73 6.41 Mean ((55ke)
39.15 5.52 12.29 8.34 34.40 8.58 Std (lre 31yl
253.85 27.18 65.27 51.91 182.96 47.75 Value (,l140)
6.007 4.19 4.57 5.55 4.65 4.81 R+l
3.47 3.45 3.41 3.47 3.39 3.46 Lambda i+1
true true true true true true Outlier (. 03l5)
Shapiro-Wilk test
0.45 0.69 0.69 0.62 0.63 0.71 w
0.001 0.001 0.001 0.001 0.001 0.001 P-value
Kolmogorov-Smirnov
0.38 0.23 0.23 0.26 0.26 0.23 D
0.001 0.001 0.001 0.001 0.001 0.001 P-value
Chi square Highest values
36.35 18.60 18.22 32.96 24.15 22.03 X
0.001 0.001 0.001 0.001 0.001 0.001 P-value
Chi square Lowest values
0.20 0.50 0.50 0.39 0.39 0.50 X
0.65 0.47 0.47 0.53 0.53 0.47 P-value

i Oom)S 5 9 9w auw Sy KNN  2dcuus (slawiy sl 4o Cross Validation g yds objlel guls 5l uisy =& Jod>
Table 6. Part of validation results with the cross validation method in imputing algorithms of KNN, Lasso Regression, and

Bayesian Regression
(After KNN)KNN Jloe! 51

(Before KNN) KNN (¢lya! 5l i
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s, SbT pllas Oy 0y okl b iyl e Bl ol SbT pllas oAy 0y ol oni L s Bl ol
Series Nezam Dare Pol Sarigamish Senteh Jan Nezam Dare Pol Sarigamish  Senteh Jan
Abad Panbedan Adinan s Agha Abad Panbedan Adinan 8 Agha
1 1.28 10.52 1.11 2.59 1.20 6.16 NA NA NA NA NA 6.16
2 5.07 7.11 1.84 5.14 1.65 4.34 NA NA NA NA NA 4.34
3 1.61 2.06 0.29 1.26 0.06 6.06 NA NA 0.29 NA 0.06 6.06
4 251 3.07 1.10 1.85 0.61 3.06 NA NA 1.10 NA 0.61 3.06
5 5.09 9.42 2.94 4.09 2.41 5.41 NA NA 2.94 NA 2.41 5.41
(After Lasso regression) gwY (gew)S, Jlos! 5l e (before Lasso regression) gu¥ yems)Sy Jlas! 5l i
s, SbT pllas Oy 0y okl g iyl s Bl ol SbT pllas oAy 0y okl g ani L s Bl ol
Series Nezam Dare Pol Sarigamish ~ Senteh Jan Nezam Dare Pol Sarigamish ~ Senteh Jan
Abad Panbedan Adinan s Agha Abad Panbedan Adinan 8 Agha
! 17.59 §2.04 575 7.03 557 s NA NA NA NA NA  NA
2 -0.19 -6.12 21.88 4.64 5.30 |4_15 NA NA NA NA NA NA
3 -5.53 75.72 0.29 -2.68 0.06 10.15 NA NA 0.29 NA 0.06 NA
4 1.51 1.13 1.10 30.03 0.61 6.58 NA NA 1.10 NA 0.61 NA
5 8.57 33.01 2.94 11.07 241 76.26 NA NA 2.94 NA 2.41 NA
(After Bayesian regression) iy oo )S ) Jlos! il (Before Bayesian regression) e cyeme)Sy sl 3l i
s o ol obady 0y ol by rni o i Bl oyl bl pllas oAy 0y ol b oni L - Bl
Seri Nezam Abad Dare Pol Sarigamish  Senteh 3¢ Nezam Dare Pol Sarigamish  Semteh
cries o 2 Panbedan Adinan arigamis cnte Agha Abad Panbedan Adinan argamis cnte Agha
1 13.04 69.38 -6.6 19.38 13.7 36.46 NA NA NA NA NA NA
2 6.64 31.57 0.72 -10.18 12.49 -56.9 NA NA NA NA NA NA
3 5.61 70.46 0.29 -8.56 0.06 5.7 NA NA 0.29 NA 0.06 NA
4 8.93 77.92 1.10 3.58 0.61 85.68 NA NA 1.10 NA 0.61 NA
5 26.16 -54.76 2.94 -1.58 2.41 10.98 NA NA 2.94 NA 2.41 NA
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Fig 10. Probability distribution of actual values and imputed values using the Lasso Regression method
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Table 7. Statistical results of computing

missing values by KNN, Lasso Regression, and Bayesian Regression

8]l Al Olody s ol s oldasy 0y .)l.g]fUé.} A

(Jan Agha) (Senteh) (Sarigamish) (Pol Adinan) (Dare Panbedan) (Nezam Ababd) i

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 U9y
31.7 0.6 7.51 0.5 18.73 0.08 10.75 0.3 44.11 0.01 8.74 0.07 Lasso (gwY)

Bayesian
49.09 0.1 10.39 0.14 15.5 0.5 10.68 0.24 55.12 0.04 11.04 0.0001 .
(e32)
1.72 0.9 5.51 0.75 4.07 0.91 0.98 0.99 25.8 0.63 1.72 0.9 KNN



http://dx.doi.org/10.61882/jwmr.2025.1310
http://jwmr.sanru.ac.ir/article-1-1310-fa.html

[ Downloaded from jwmr.sanru.ac.ir on 2026-02-02 ]

[ DOI: 10.61882/jwmr.2025.1310 ]

u“qul.e 9§)La 5 L;al;mul s L5, ‘Ol,.jlé); JXYS ma\)‘gyﬁiﬁn O g0 ¢ 2 g ool

Yy

VEF /Y 0 )los /pmd s Jlo 50l 0595 o e 4ol g

Sl S gy 99 4 Cand dlwgnl g dlwgy ol
Hde 4 olaw )stNN llg & dso sl cpl e e
ot sl O 4235 o dler (8005 Ao
Caolio o LBl oy J8lis 4 by a8 dayld > 5.8
YL il 50 g Slaslre (Sole Jdoay KNN cés il o
Cowl 00505 g 0liaS slmodly | m3Cns § duole )3 ]
l50 33 S o bt 35 1) 00l gy HE e Jbb cpe 0 a8
& Caol olus 3145 2929 9 oﬁ:—oala & hey cpl (eld
SIBL 529 2)I ke 236 o) (sl Canl (1S0a
30303 395 yobo et 9 ] )3 Sl 99 g 030> gy 5
9.:.»\1 ‘_)9‘-‘*’);) SN u».mlf el Al guy dl.b:o.)l.) Sy u».sLo
L oS atgy MolS sloodly (sl (g )5 £95 il 2550
=l 88 o 5,8 eolatul 3)50 Jdo 3 (g)luL dbul Gua
By ailBagy oyl 03 gy 53 Lol Wles 1)) Wlgs o s3>

_ oI5 55 a
Iy wodld (glazs haed cotel Cunday gl 4 dasgi b
LS o (Byre Gy odh laiedy 1y S )8 il jl 2,8 A
Gy loodlsy sl (glass slaylrges ;o wlal et g
o> pasis (oobj ke 4 laglyy ple b awglie )
o3> sl (lp (olio gy duyon i & 3980
Oms O KNN gy bl SS5edgyum slaoald jo ey
2 bl Jlalie glaedly 5l eslaiwl b osiied (slaosls
@l 5> g Cunl 03905 Joo 0 Yl ;03 09y 93 O
Losld (g cdallae cpl 3 Sy gl Jls 4 L
awle oyl )3 @y glaodly polie uw g (il Jloy
U9 Jl oieS g oals duwle ol (el S g W3S
8> oS Canl ol gy cpl cule §1 (S el KNN
dy90 3> il yieS Xyl 31 slaodls & dble y
KNN 208 el s dgy slyls (slaoald j3 .ol o0y L]

Li et al, 2020; Maanavi & ) s b &5 o)l ool ppoiekhe g op 8y 3l (S5 g Ll o Jos 55> jluw
b &l (Roozbeh, 2021 gy ol 00iaS (claodld (¢)lIls g adCams (sla by,

References

Ahmadi, F., Dinpajoh, Y., & Fard, A. F. (2014). Comparing linear and nonlinear time series models in river
flow forecasting (case study: Baranduz-chai river). Irrigation Sciences and Engineering, 37(1), 93-105.
[In Persian]

Aryanmanesh J, N. H., Mahmoodi P, Khosravi P. (2024). Reconstruction of Missing Daily Streamflow
Data using the MissForest Algorithm in Southern Baluchestan Basin, Iran. Journal of Watershed
Management Research, 15(2), 49-64. [In Persian]

Azimi-Habashi, S., Miryaghoubzadeh, M., Erfanian, M., & Javan, K. (2024). Projection of Future Climatic
Variables based on CMIP5 and CMIP6 Models in the Gedarchay Catchment (West Azarbaijan). Journal
of Watershed Management Research, 15(2), 1-16. https://doi.org/doi:10.61186/jwmr.15.2.1. [In
Persian]

Bae, L., & Ji, U. (2019). Outlier detection and smoothing process for water level data measured by ultrasonic
sensor in stream flows. Water, 11(5), 951. https://doi.org/(doi.org/10.3390/w11050951

Bahrami, M., Amiri, M.J., Rezaei Maharlouyi, F., & Ghaffari, K. (2018). Determining the effect of data
preprocessing on the performance of artificial neural networks for predicting monthly precipitation in
Abadeh County. Eco-Hydrology, 4(1), 29-37. [In Persian]

Ben-Gal, 1. (2005). Outlier detection. Data Mining and Knowledge Discovery Handbook, 131-146.
https://doi.org/doi.org/10.1007/0-387-25465-X 7

Boiten, W. (2003).  Hydrometry: IHE  Delft lecture note series. CRC  press.
https://doi.org/doi.org/10.1201/9780203971093

Boukerche, A., Zheng, L., & Alfandi, O. (2020). Outlier detection: Methods, models, and classification.
ACM Computing Surveys (CSUR), 53(3), 1-37. https://doi.org/doi.org/10.1145/3381028

Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: identifying density-based local
outliers. Proceedings of the 2000 ACM SIGMOD. International Conference on Management of Data.

Cohn, T. A., England, J., Berenbrock, C., Mason, R., Stedinger, J., & Lamontagne, J. (2013). A generalized
Grubbs-Beck test statistic for detecting multiple potentially influential low outliers in flood series.
Water Resources Research, 49(8), 5047-5058. https://doi.org/doi.org/10.1002/wrcr.20392

D'Agostino, R. B. (1986). Goodness-of-fit-techniques (Vol. 68). CRC press.

Dave, D., & Varma, T. (2014). A review of various statistical methods for outlier detection. International
Journal of Computer Science & Engineering Technology (IJCSET), 5(2), 137-140.

Donoho, D. L., & Huber, P. J. (1983). The notion of breakdown point. 4 Festschrift for Erich L. Lehmann,
157184.

Fenton, J. D., & Keller, R. J. (2001). The calculation of streamflow from measurements of stage.

Goldstein, M., & Dengel, A. (2012). Histogram-based outlier score (hbos): A fast unsupervised anomaly
detection algorithm. KI-2012:Poster and Demo Track, 1, 59-63.

Grubbs, F. E. (1969). Procedures for detecting outlying observations in samples. Technometrics, 11(1), 1-
21.

Herschy, R. W. (2008). Streamflow Measurement. CRC press.


https://doi.org/doi:10.61186/jwmr.15.2.1
https://doi.org/\(doi.org/10.3390/w11050951
https://doi.org/doi.org/10.1007/0-387-25465-X_7
https://doi.org/doi.org/10.1201/9780203971093
https://doi.org/doi.org/10.1145/3381028
https://doi.org/doi.org/10.1002/wrcr.20392
http://dx.doi.org/10.61882/jwmr.2025.1310
http://jwmr.sanru.ac.ir/article-1-1310-fa.html

[ Downloaded from jwmr.sanru.ac.ir on 2026-02-02 ]

[ DOI: 10.61882/jwmr.2025.1310 ]

ezl 5 )l 5 (Sl g L) () lilye (gape dljogin po (s o ¢ 2 gulus o)
vy 29,8025 el 03 (So3glgsdan slmodly sy )3 0MieS g oy pdlie (g3lojl g st slasdgy (b))

Holmstrom, H., & Fransson, J. E. (2003). Combining remotely sensed optical and radar data in k NN-
estimation of forest variables. Forest Science, 49(3), 409-418.
https://doi.org/doi.org/10.1093/forestscience/49.3.409

Horner, I., Renard, B., Le Coz, J., Branger, F., McMillan, H., & Pierrefeu, G. (2018). Impact of stage
measurement errors on streamflow uncertainty. Water Resources Research, 54(3), 1952-1976.
https://doi.org/doi.org/10.1002/2017WR022039

Kiani, R. a. M., M. . (2015). A review of outlier detection methods. International Conference on Research
in Science and Technology. 14 December 2015, Kualalumpur, Malaysia. [In Persian]

Li, Q., Fisher, K., Meng, W., Fang, B., Welsh, E., Haura, E. B., Koomen, J. M., Eschrich, S. A., Fridley,
B. L., & Chen, Y. A. (2020). GMSimpute: a generalized two-step Lasso approach to impute missing
values in label-free mass spectrum analysis.  Bioinformatics, 36(1), 257-263.
https://doi.org/doi.org/10.1093/bioinformatics/btz488

Maanavi, M., & Roozbeh, M. (2021). Regression Analysis Methods for High-dimensional Data. Andishe
_ye Amari, 25(1), 69-90. [In Persian]

Montgomery, D. C., & Runger, G. C. (2019). Applied Statistics and Probability For Engineers. John wiley
& sons.

Naghdi, R., Shayannezhad, M., & Sadati, N. S. (2010). Comparison of different methods for estimating of
monthly discharge missing data in Grand Karoon River Basin. [In Persian]

Nazeri Tahrudi, M. (2014). Compared to the normal mechanism becomes the normal monthly rainfall data
from different regions of Iran. Water and Soil, 28(2), 365-372. [In Persian]

Ordooni, M., Memarian, H., Akbari, M., & Pourreza, M. (2021). Evaluation and Comparison of GPM
Satellite Precipitation Data with Meteorological Station using Kolmogorov-Smirnov Test. Iranian
Journal of Rainwater Catchment Systems, 9(2), 11-24. [In Persian]

Poursalehi, F., Shahidi, A., & Khashei Siuki, A. (2019). Comparison of decision tree m5 and k-nearest
neighborhood algorithm models in the prediction of monthly precipitation (case study: birjand synoptic
station). Iranian Journal of Irrigation & Drainage, 13(5), 1283-1293. [In Persian]

Rahmdel, M., Mohamadian, A., Javanshiri, Z., & Sanaeinejad, S. (2021). Exploratory analysis and in-
homogeneity study of temperature and rainfall series of meteorological stations in Iran (period 1989-
2018). [In Persian]

Rajabi Jaghargh, M., Mousavi Baygi, S. M., Araghi, S. A., & Jabari Noghabi, H. (2024). Calibration of
ERAS daily precipitation using MLP, D-Tree, and KNN algorithms in Razavi Khorasan province.
Iranian Journal of Rainwater Catchment Systems, 12(1), 129-147. [In Persian]

Schafer, J. L., & Graham, J. W. (2002). Missing data: our view of the state of the art. Psychological
Methods, 7(2), 147.

Shataee, S., Kalbi, S., Fallah, A., & Pelz, D. (2012). Forest attribute imputation using machine-learning
methods and ASTER data: comparison of k-NN, SVR and random forest regression algorithms.
International Journal of Remote Sensing, 33(19), 6254-6280.
https://doi.org/doi.org/10.1080/01431161.2012.682661

Smiti, A. (2020). A critical overview of outlier detection methods. Computer Science Review, 38, 100306.
https://doi.org/doi.org/10.1016/j.cosrev.2020.100306

Suri, N. M. R., Murty, M. N., & Athithan, G. (2019). Outlier detection: Techniques and Applications.
Springer. https://doi.org/doi.org/10.1007/978-3-030-05127-3

Tourian, M., Schwatke, C., & Sneeuw, N. (2017). River discharge estimation at daily resolution from
satellite altimetry over an entire river basin. Journal of Hydrology, 546, 230-247.
https://doi.org/doi.org/10.1016/j.jhydrol.2017.01.009

Umar, N., & Gray, A. (2023). Comparing single and multiple imputation approaches for missing values in
univariate and multivariate water level data. Water, 15(8), 1519.
https://doi.org/doi.org/10.3390/w15081519


https://doi.org/doi.org/10.1093/forestscience/49.3.409
https://doi.org/doi.org/10.1002/2017WR022039
https://doi.org/doi.org/10.1093/bioinformatics/btz488
https://doi.org/doi.org/10.1080/01431161.2012.682661
https://doi.org/doi.org/10.1016/j.cosrev.2020.100306
https://doi.org/doi.org/10.1007/978-3-030-05127-3
https://doi.org/doi.org/10.1016/j.jhydrol.2017.01.009
https://doi.org/doi.org/10.3390/w15081519
http://dx.doi.org/10.61882/jwmr.2025.1310
http://jwmr.sanru.ac.ir/article-1-1310-fa.html
http://www.tcpdf.org

