دوره 9، شماره 17 - ( بهار و تابستان 1397 )                   جلد 9 شماره 17 صفحات 144-132 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Arabameri A, Rezaei K, Shirani K, Mojtaba M. (2018). Identify Areas Susceptible to Landslides using new Synthetic Method Shannon’s Entropy Index-Information Value (Case Study: Sarkhon Watershed). jwmr. 9(17), 132-144. doi:10.29252/jwmr.9.17.132
URL: http://jwmr.sanru.ac.ir/article-1-631-fa.html
عرب عامری علیرضا، رضایی خلیل، شیرانی کورش، یمانی مجتبی. تعیین عرصه‌های حساس به لغزش با استفاده از روش ترکیبی نوین آنتروپی شانون-ارزش اطلاعات (مطالعه موردی: حوزه سرخون کارون)‌ پ‍‍ژوهشنامه مديريت حوزه آبخيز 1397; 9 (17) :144-132 10.29252/jwmr.9.17.132

URL: http://jwmr.sanru.ac.ir/article-1-631-fa.html


دانشگاه تربیت مدرس
چکیده:   (3150 مشاهده)

زمین لغزش­ها خسارات جدی را به اقتصاد، محیط و انسان در سراسر جهان تحمیل می­کند، شناسایی مناطق حساس به زمین­­ لغزش برای اجتناب از این خطرات ضروری می­باشد. در این پژوهش جهت پهنه ­بندی خطر زمین­ لغزش در حوزه سرخون کارون از مدل ترکیبی آنتروپی شانون و ارزش اطلاعات استفاده گردیده است. بدین­ منظور ابتدا با استفاده از تصاویر ماهواره­ای و بازدیدهای میدانی، نقاط لغزشی در منطقه مورد نظر شناسایی و نقشه پراکنش زمین­ لغزش­های منطقه مورد مطالعه تهیه گردید. در گام بعد، ۱۲ عامل موثر در رخداد زمین لغزش شامل طبقات ارتفاعی، درصد شیب، جهت شیب، فاصله از جاده، فاصله از گسل، فاصله از آبراهه، لیتولوژی، کاربری اراضی، شاخص قدرت جریان (SPI)، شاخص خیسی توپوگرافی (TWI)، شاخص انحنای سطح و شاخص انحنای مقطع شناسایی گردید و نقشه ­های مذکور در محیط ArcGIS10.2 رقومی گردید. به منظور تعیین وزن عوامل از روش آنتروپی شانون و برای تعیین وزن کلاس­ها از روش ارزش اطلاعات استفاده گردید. نقشه نهایی پهنه­ بندی در ۵ کلاس پتانسیل خطر خیلی­کم، کم، متوسط، زیاد و خیلی­ زیاد تهیه گردید. منحنی ROC و مساحت زیر منحنی (AUC) برای نقشه پهنه ­بندی ترسیم و از AUC برای صحت­ سنجی استفاده گردید و مقادیر حاصل از آن نشان داد که مدل ترکیبی دارای کارایی بالایی (۷۸۱/۰) جهت پهنه­ بندی خطر زمین لغزش می­باشد. نتایج نشان داد که عوامل کاربری اراضی و فاصله از جاده بیشترین تاثیر را در وقوع زمین­لغزش داشته­اند. طبق نتایج، ۴۵/۱۴ درصد (‏۴/۱۱۲۲۰‏ هکتار) از حوزه در رده خطر زیاد و ۱۱/۶ درصد (‏۱/۴۷۴۴‏ هکتار) در رده خطر خیلی زیاد قرار گرفته است. نتایج حاصل از این پژوهش می­تواند در زمینه انتخاب مکان­های مناسب برای طرح­های توسعه ­ای مانند زیرساخت­ها، ساختمان­ها، ساخت جاده­ها و حفاظت محیطی مورد استفاده برنامه­ریزان قرار گیرد. 
 

متن کامل [PDF 2653 kb]   (979 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ژئومورفولوژی و زمين شناسی
دریافت: 1395/2/29 | ویرایش نهایی: 1397/10/1 | پذیرش: 1396/2/13 | انتشار: 1397/7/4

فهرست منابع
1. ‎1. Arabameri, A.R. and A.H. Halabian. 2015. Landslide Hazard Zonation Using Statistical Model of AHP (Case ‎Study: Zarand Saveh Basin). Physical Geomorphology, 28: 65-86.‎
2. Arabameri, A.R. and K. Shirani. 2016. Identification of Effective Factors on Landslide Occurrence and its Hazard Zonation using Dempster-Shafer theory (Case study:Vanak Basin, Isfahan Province). Journal of Watershed Engineering and Management, 8(1): 93-106.
3. Ayalew, L. and H. Ymagishi. 2001. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakud-Yahiko Mountains, Central Japan. Geomorphology, 65: 15-31. [DOI:10.1016/j.geomorph.2004.06.010]
4. Bednarik, M., B. Magulova, M. Matys and M. Marschalko. 2010. Landslide Susceptibility Assessment of the Kralˇovany-Liptovsky' Mikulaš Railway Case Study. Physics and Chemistry of the Earth, 35: 162-171. [DOI:10.1016/j.pce.2009.12.002]
5. Bui, D.T., B. Pradhan, O. Lofman, I. Revhaug and O.B. Dick. 2012. Landslide susceptibility assessment in the HoaBinh province of Vietnam: A comparison of the Levenberg-Marquardt and Bayesian regularized neural networks. Geomorphology, 172: 12-29. [DOI:10.1016/j.geomorph.2012.04.023]
6. Can, T., H.A. Nefeslioglu, C. Gokceoglu, H. Sonmez and Y. Duman. 2005. Susceptibility assessments of shallow earth flows triggered by heavy rainfall at three catchment's by logistic regression analysis. Geomorphology, 82: 250-271. [DOI:10.1016/j.geomorph.2005.05.011]
7. Constantin, M., M. Bednarik, M.C. Jurchescu and M. Vlaicu. 2011. Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environmental Earth Science, 63: 397-406. [DOI:10.1007/s12665-010-0724-y]
8. Demir, G., M. Aytekin, A. Akgun, S.B. Ikizler and O. Tatar. 2009. A comparison of landslide ‎susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by ‎likelihood-frequency ratio and analytic hierarchy process methods. Nat Hazards: 121-134.
9. Fatemiaghda, M., J. Ghiomian and A. Eshgheli Farahani. 2004. Evaluation efficiency statistics methods in determined Landslide hazard potential. Journal of Geosciences, 11: 28-47.
10. Guzzetti, F., A. Mondini, C. Cardinali, F. Fiorucci, M. Santangelo and K.T. Chang. 2012. Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112: 42-66. [DOI:10.1016/j.earscirev.2012.02.001]
11. Greco, R., M. Sorriso-Valvo and E. Catalano. 2007. Logistic regression analysis in the evaluation of mass movement's susceptibility case study: Calabria. Italy. Engineering Geology, 89: 47-66. [DOI:10.1016/j.enggeo.2006.09.006]
12. Hansen, A. 1984. Engineering geomorphology: the application of an evolutionary model of ‎Hong Kong. Zeitschrift für Gomorphologie, 51: 39-50. ‎
13. Komac, M. 2006. A landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in perialpine Slovenia. Geomorphology, 74: 17-28. [DOI:10.1016/j.geomorph.2005.07.005]
14. Lee, S and T. Sambath. 2006. Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50: 847-855. [DOI:10.1007/s00254-006-0256-7]
15. Lee, S and K. Min. 2001. Statistical analysis of landslide susceptibility at Yongin, Korea. Environmental Geology, 40: 1095-1113. [DOI:10.1007/s002540100310]
16. Maleki, A and A. Ghorbanpour. 2008. Landslide hazard zonation In Chemleh Watershed of Songhour. Journal of Geographic and Development, (12): 181-198 (In Persian).
17. Mostafai, H., M. Onagh, M. Mesdaghi and M. Shariat Jafari. 2009. Comparison between efficiency of empirical and statistical model to landslide hazard zonation (Almootrood watershed). Soil and Water Conservation Research Journal. 16: 1-16 (In Persian).
18. Mohammadi, M., H. Moradi, S. Feiznia and H. Pourghasemi. 2009. Assessment of two variate Regresion and AHP methods efficiency for Land slide hazard zoning, (A Case study: Haraz watershed). Iranian Journal of Natural Resources, 62: 539-551 (In Persian).
19. Mohammadi, M., H. Moradi, S. Feiznia and H. Pourghasemi. 2009. Ranking of effective factors on Land slide and Land slide hazard zoning maps using two variate Regresion and AHP methods, (Case study: Haraz watershed). Journal of Earth Sciences, 74: 27-32 (In Persian).
20. Mohamadi, M., H. Moradi, S. Feiznia and H. Porghasemi. 2010. Efficiency of confidence operating model, the value of information and AHP in landslide hazard zonation in Haraz watershed. Iran Natural Resources Journal, 62: 539-551. (In Persian)
21. Nasrabadi, A.H., Sh. Shatai, M. Rafatnia and M. Shariat Jafari. 2008. Assessment of efficiency to information value statistics and area density models for landslide hazard zonation. Natural Resources and Agriculture Science Journal, 15: 23-34 (In Persian).
22. Neuhauser, B. and B. Terhorst. 2006. Landslide Susceptibility Assessment Using Weights-of-Evidence Applied to a Study Area at the Jurassic Escarpment (SWGermany). Geomorphology: 1-13. [DOI:10.1016/j.geomorph.2006.08.002]
23. Pradhan, B. and S. Lee. 2010. Landslide susceptibility assessment and factor effect analysis: back propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling. Environmental Modeling and Software, 25: 747-759. [DOI:10.1016/j.envsoft.2009.10.016]
24. Pourghasemi, H.R., B. Pradhan, C. Gokceoglu and K. Deylami Moezzi. 2012. A comparative assessment of prediction capabilities of Dempster-Shafer and weights-of-evidence models in landslide susceptibility mapping using GIS.Geomatics. Natural Hazards & Risk, 5:23-43. (in Persian)
25. Rasai, A., K. Khosravi, M. Habibnejad Roshan, A. Heidari and A. Mashayekh Khan. 2015. Lnadslide Hazard Zonation using Multivariate Regression in GIS Environment (Case Study: Aghmashhad Watershed, Mazandaran). Journal of Watershed Management Research, 6(12): 205-2015.
26. Shannon, C.E. 1948. A mathematical theory of communication. Bulletin System Technology Journal, 27: 379-423. [DOI:10.1002/j.1538-7305.1948.tb01338.x]
27. Zare, M., A. Moghaddamnia, S. Tali Khoshk and H. Salmani. 2015. Landslide Hazard Assessment by using Neuro-Fuzzy Technique in VazWatershed, Journal of Watershed Management Research, 6(11): 101-110 ‎(In Persian)‎.
28. Zare, M., M.H. Jouri, D. Askarizadeh, T. Salarian and M. Fakhre Ghazi. 2016. An Evaluation of Landslide Hazard in Masooleh Watershed using Dempster-Shafer Theory and GIS. Journal of Watershed Management Research, 7(13): 2010-2017 ‎(In Persian)‎. [DOI:10.18869/acadpub.jwmr.7.13.217]
29. Zhu, C. and X. Wang. 2009. Landslide susceptibility mapping: A comparison of information and weights-of evidence methods in Three Gorges Area. International Conference on Environmental Science and Information Application Technology, 187: 342-346. [DOI:10.1109/ESIAT.2009.187]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb