دوره 10، شماره 19 - ( بهار و تابستان 1398 )                   جلد 10 شماره 19 صفحات 12-1 | برگشت به فهرست نسخه ها


XML English Abstract Print


دانشگاه تبریز
چکیده:   (3745 مشاهده)

     در این تحقیق کاربرد شبکه عصبی پرسپترون چندلایه (MLP) برای پیش ­بینی تبخیر روزانه در دو ایستگاه سینوپتیک رشت و منجیل واقع در استان گیلان در شمال­ ایران بررسی گردیده است. ابتدا با استفاده از آزمون گاما مهم­ترین ترکیب از پارامترهای هواشناسی برای هر دو ایستگاه شناسایی و مدل­سازی براساس ترکیب بهینه صورت گرفت. نتایج مدل شبکه عصبی مصنوعی- آزمون گاما (ANN-GT) با استفاده از معیارهای ارزیابی مدل همچون مجذور میانگین مربعات خطا (RMSE) ضریب همبستگی (CC) و ضریب ناش-ساتکلیف (NS) ارزیابی شده است. نتایج نشان داد که مدل (ANN-GT) برای ایستگاه رشت با ضریب همبستگی 86/0، مجذور میانگین مربعات خطا 95/0، ضریب ناش-ساتکلیف 74/0 و ایستگاه منجیل با ضریب همبستگی 94/0، مجذور میانگین مربعات خطا 58/1، ضریب ناش-ساتکلیف 89/0، دارای عملکرد قابل قبولی در پیش­ بینی تبخیر روزانه می ­باشد. برای بررسی عدم قطعیت، درصدی از داده­ های مشاهده شده که در محدوده باند پیش­بینی عدم قطعیت 95 درصد (95PPU) قرارگرفته­ اند (P-factor) و عرض متوسط باند (d-factor) برای مدل، مدنظر قرار داده شد. بنابر نتایج عدم قطعیت، عرض متوسط باند عدم قطعیت (d-factor) برای ایستگاه رشت (30/0) و برای منجیل (33/0) برآورد شد. این امر حاکی از عدم قطعیت پایین مدل شبکه عصبی مصنوعی-آزمون گاما (ANN-GT) در پیش ­بینی تبخیر روزانه برای هر دو ایستگاه می­ باشد. همچنین درصد داده­ های مشاهداتی در باند (95PPU) برای رشت 25 و برای منجیل 45 درصد به­دست آمد. دلیل پایین بودن این مقادیر رامی ­توان، وجود عدم قطعیت­ های کوچک در پارامترها ذکر کرد.

متن کامل [PDF 1523 kb]   (850 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: هيدرولوژی
دریافت: 1395/7/27 | ویرایش نهایی: 1398/5/9 | پذیرش: 1396/2/13 | انتشار: 1398/5/12

فهرست منابع
1. Abbaspour, K.C., J. Yang, I. Maximov, R. Siber, K. Bogne, J. Mieleitne, J. Zobrist and R. Srinivasan. 2007. Modeling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333: 413-430. [DOI:10.1016/j.jhydrol.2006.09.014]
2. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000. Artificial Neural Networks in Hydrology. I: Preliminary Concepts, Journal of Hydrology Engineering, 2: 115-123. [DOI:10.1061/(ASCE)1084-0699(2000)5:2(115)]
3. Alizadeh, A., A. Eizad, K. Davar, A.N. Ziaie, S. Akhavan and Z. Hamidi. 2013. Estimation of actual evapotranspiration at regional-annual scale using SWAT. Iranian Journal of lrrigation and Drainage, 2: 243-258 (In Persian).
4. Coulibaly, P., F. Anctil and B. Bobée. 2000. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach, Journal of Hydrology, 230: 244-257. [DOI:10.1016/S0022-1694(00)00214-6]
5. Dawson, C.W., R.J. Abrahart, A.Y. Shamseldin and R.L. Wibly. 2006. Flood estimation at ungauged sites using artificial neural networks, Journal of Hydrology, 319: 391-409. [DOI:10.1016/j.jhydrol.2005.07.032]
6. Durrant, P.J. 2001. Win_gamma TMA non-linear data analysis and modeling tool with applications to flood prediction. Ph.D. Thesis, Department of Computer Science, Cardiff University Wales, UK, 254 pp.
7. Evans, D. and A.J. Jones. 2002. A proof of the gamma test. Proceedings of Royal Society, Series A, 458: 2759-2799. [DOI:10.1098/rspa.2002.1010]
8. Farokhnia, A. and S. Morid. 2010. Uncertainty analysis of artificial neural networks and neuro-fuzzy models in river flow forecasting. Journal of Iran Water Resources Research, 3: 14-27 (In Persian).
9. Ghobaie Sogh, M.A., A. Mosaedi and A.A. Dehghani. 2010. Solar radiation data and their intelligent modeling based on gamma test with evaluation of calibrated empirical equations. Journal of Water and Soil Conservation, 18: 208-185.
10. Ghorbani, M.A., H. Ahmadzadeh, M. Isazadeh and O. Terzi. 2016. A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction. Environmental Earth Science, 75: 476-490. [DOI:10.1007/s12665-015-5096-x]
11. Ghorbani, M.A., R. Khatibi, B. Hosseini and M. Bilgili. 2013. Relative importance of parameters affecting wind speed prediction using artificial neural networks. Theoritical and Applied Climatology, 114: 107-115. [DOI:10.1007/s00704-012-0821-9]
12. Goyal, M.K., B. Bharti, J. Quilty, J. Adamowski and A. Pandey. 2014. Modeling of daily pan evaporation in sub-tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert System with Application, 41: 5267-5276. [DOI:10.1016/j.eswa.2014.02.047]
13. Isazadeh, M., H. Ahmadzadeh and M.A. Ghorbani. 2016. Assessment of kernrl functions performance in river flow estimation using support vector machine. Journal of Water and Soil Conservation, 23: 69-89 (In Persian).
14. Jones, A.J. 2004. New tools in non-linear modeling and prediction. Computational Management Science, 1: 109-149. [DOI:10.1007/s10287-003-0006-1]
15. Kisi, O., O. Genc, S. Dinc and M. Zounemat-Kermani. 2016. Daily pan evaporation modeling using chi-squared automatic interaction detector, neural networks. Classification and Regression tree Computers and Electronics in Agriculture, 122: 112-117. [DOI:10.1016/j.compag.2016.01.026]
16. Malik, A. and A. Kumar. 2015. Pan evaporation simulation based on daily meteorological data using soft computing techniques and multiple linear regression. Water Resource Management, 29: 1859-1872. [DOI:10.1007/s11269-015-0915-0]
17. Moghaddamnia, A., M. Ghafari Gousheh, J. Piri, S. Amin and D. Han. 2009. Evaporation estimation using artificial neural networks and adaptive neurofuzzy inference system techniques. Advance. Water Resource Management, 32: 88-97. [DOI:10.1016/j.advwatres.2008.10.005]
18. Nash, J.E. and I.V. Sutcliffe. 1970. River flow forecasting through conceptual models, Part I, A discussion of principles, Journal of Hydrology, 10:282-290. [DOI:10.1016/0022-1694(70)90255-6]
19. Noori, R., G. Hoshyaripour, K. Ashrafi and B. Nadjar Araabi. 2010. Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration. Atmospheric Environment, 44: 476-482. [DOI:10.1016/j.atmosenv.2009.11.005]
20. Nourani, V. and M.S. Fard. 2012. Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Advance Engineering Software, 47: 127-146. [DOI:10.1016/j.advengsoft.2011.12.014]
21. Ribot, J.C., A.R. Magalhães and S. Panagides. 2005. Climate variability, climate change and social vulnerability in the semi-arid tropics, cambridge university press, 170 pp.
22. Schuol, J. and K.C. Abbaspour. 2006. Calibration and uncertainty issues of a hydrological model SWAT applied to West Africa. Advances in Geoscience, 9: 137-143. [DOI:10.5194/adgeo-9-137-2006]
23. Seifi, A., S.M. Mirlifi and H. Riahi. 2012. Introduction and application of least square support vector machine (LSSSVM) for simulation of reference evapotranspiration and uncertainly analysis of results (case study: Kerman city). Journal of Irrigation and Water, 13: 67-79 (In Persian).
24. Shafieai, M., H. Ansari, K. Davari and B. Ghahreman. 2012. Calibration and uncertainty analysis of a semi-distributed model in a semi-arid area, case study Neyshabur watershed. Journal of Science and Technology of Agriculture and Natural Resources, Soil and Water Sciences, 64: 137-148 (In Persian).
25. Sharifi, A., Y. Dinpazhouh, A. Fakheryfard and A. Moghadamni. 2012. Optimum combination of variables for run off simulation in Amameh watershed using gamma test. Journal of Knowledge of Soil and Water, 4: 59-72 (In Persian).
26. Zamanian, M., R. Fatahi, A. Fatahi and F. Hossein Pour. 2011. Input parameters preprocessing in artificial neural network and adaptive neuro-fuzzy inference system using stepwise regression and gamma test techniques for estimation of daily evaporation. Journal of Irrigation and Water, 9: 63-78 (In Persian).

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.