Volume 9, Issue 17 (9-2018)                   jwmr 2018, 9(17): 67-81 | Back to browse issues page


XML Persian Abstract Print


Abstract:   (4291 Views)

Floods are one of the most common natural disasters which causing financial and life losses, yearly. Therefore, to reduce the harmful effects of flood occurrence, it is necessary to prepare vulnerability maps for flood management. The aim of the present study is flood inundation mapping of Jahrom Township, Fars Province using multi-criteria decision making techniques such as AHP and TOPSIS and a statistical model namely weights-of-evidence (WOE) and comparison of their performance. A total of 53 flooding locations were identified in the study area, 35 locations were randomly assigned for modelling process and the remaining 16 locations were used for validation aims. Nine factors that affect the occurrence of flooding were considered and their maps were prepared in ArcGIS software. These factors are slope degree, plan curvature, elevation, topographic wetness index (TWI), stream power index (SPI), distance from river, land use, rainfall, and lithology. After the flood susceptibility mapping using the mentioned methods, results were evaluated using recivier operating characteristic (ROC) curve. The area under the curve (AUC) of applied models shows the accuracy of 68, 70, and 86 percent for AHP, TOPSIS, and weight of evidence statistical models, respectively. Also, results showed that statistical models have a better accuracy in comparision with MCDM models and expert approaches. The results of present study could be useful to managers, researchers, and designers for better managing the flood affected areas and to reduce its damage.
 

Full-Text [PDF 6151 kb]   (1364 Downloads)    
Type of Study: Research | Subject: بلايای طبيعی (سيل، خشکسالی و حرکت های توده ای)
Received: 2017/01/17 | Revised: 2018/09/25 | Accepted: 2017/05/29 | Published: 2018/09/26

References
1. Akgün, A. and F. Bulut. 2007. GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environmental Geology, 51(8): 1377-1387. [DOI:10.1007/s00254-006-0435-6]
2. Alvarado-Aguilar, D., J.A. Jime'nez and R.J. Nicholls. 2012. Flood hazard and damage assessment in the Ebro Delta (NW Mediterranean) to relative sea level rise. Nat Hazards 62: 1301-1321. [DOI:10.1007/s11069-012-0149-x]
3. Billa, L., M. Shattri, A.R. Mahmud and A.H.Ghazali. 2006. Comprehensive planning and the role of SDSS in flood disaster management in Malaysia. Disaster Prevent Managment 15: 233-240. [DOI:10.1108/09653560610659775]
4. Bonham-Carter, G. 1991. Integration of geoscientific data using GIS. Geographic information systems: principle and applications. Longdom, London, 171-184.
5. Bonham-Carter, G.F. 1994. Geographic Information Systems for geoscientists-modeling with GIS. Computer methods in the geoscientists, 13, 398.
6. Bubeck, P., W.J. Botzen and J.C. Aerts. 2012. A review of risk perceptions and other factors that influence flood mitigation behavior. Risk Analysis, 32(9): 1481-1495. [DOI:10.1111/j.1539-6924.2011.01783.x]
7. Chau, K., Wu, C., and Li, Y. 2005. Comparison of several flood forecasting models in Yangtze River. Journal of Hydrologic Engineering, 10(6): 485-491. [DOI:10.1061/(ASCE)1084-0699(2005)10:6(485)]
8. Chen, Y.R., C.H. Yeh and B. Yu. 2011. Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan. Natural Hazards, 59(3): 1261-1276. [DOI:10.1007/s11069-011-9831-7]
9. Cheng, S., C.W. Chan and G.H. Huang. 2002. Using multiple criteria decision analysis for supporting decisions of Solid Waste Management Journal of Environmental Science and Health, Part A, 37(6): 975-990. [DOI:10.1081/ESE-120004517]
10. Cloke, H. and F. Pappenberger. 2009. Ensemble flood forecasting: a review. Journal of Hydrology, 375(3): 613-626. [DOI:10.1016/j.jhydrol.2009.06.005]
11. Darabi, H., K. Shahedi and M. Mardian. 2016. Mapping possibility hazard and sensivity flood using frequency ratio in the watershed poul doab shazand. Journal of Watershed Engineering and Management, 8(1): 68-79 (In Persian).
12. Dang, N.M., M.S. Babel and H.T. Luong. 2011. Evaluation of food risk parameters in the day river flood diversion area, Red River delta, Vietnam. Natural Hazards, 56(1): 169-194. [DOI:10.1007/s11069-010-9558-x]
13. Dawson, C.W., R.J. Abrahart, A.Y. Shamseldin and R.L. Wilby. 2006. Flood estimation at ungauged sites using artificial neural networks Journal of Hydrology, 319(1): 391-409. [DOI:10.1016/j.jhydrol.2005.07.032]
14. Dong, S. 2016. Comparisons between different multi-criteria decision analysis techniques for disease susceptibility mapping. Student Thesis Series INES.
15. Fernandez, D. and M. Lutz. 2010. Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis. Engineering Geology, 111(1): 90-98. [DOI:10.1016/j.enggeo.2009.12.006]
16. Hu, Z. and C. Lo. 2007. Modeling urban growth in Atlanta using logistic regression. Computers, Environment and Urban Systems, 31(6): 667-688. [DOI:10.1016/j.compenvurbsys.2006.11.001]
17. Huang, X., H. Tan, J. Zhou, T. Yang, A. Benjamin, S.W. Wen and S. Fen. 2008. Flood hazard in Hunan province of China: an economic loss analysis. Natural Hazards, 47(1): 65-73. [DOI:10.1007/s11069-007-9197-z]
18. Hwang, C. and K. Yoon. 1981. Multiple attribute decision making, in lecture notes in economics and mathematical systems 186: Springer-Verlag, Berlin. [DOI:10.1007/978-3-642-48318-9]
19. Hwang, C.L. and M.J. Lin. 2012. Group decision making under multiple criteria: methods and applications (Vol. 281): Springer Science and Business Media.
20. Jaafari, A., A. Najafi, H. Pourghasemi, J. Rezaeian and A. Sattarian. 2014. GIS-based frequency ratio and index of entropy models for landslide susceptibility assessment in the Caspian forest, northern Iran. International Journal of Environmental Science and Technology, 11(4): 909-926. [DOI:10.1007/s13762-013-0464-0]
21. Kazakis, N., I. Kougias and T. Patsialis. 2015. Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: Application in Rhodope-Evros region, Greece. Science of the Total Environment, 538: 555-563. [DOI:10.1016/j.scitotenv.2015.08.055]
22. Khosravi, K., E. Nohani, E. Maroufinia and H.R. Pourghasemi. 2016. A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Natural Hazards, 1-41. [DOI:10.1007/s11069-016-2357-2]
23. Kia, M.B., S. Pirasteh, B. Pradhan, A.R. Mahmud, W.N.A. Sulaiman and A. Moradi. 2012. An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental earth sciences, 67(1): 251-264. [DOI:10.1007/s12665-011-1504-z]
24. Lee, M.J., J.E. Kang and S. Jeon. 2012. Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS. Paper presented at the 2012 IEEE International Geoscience and Remote Sensing Symposium. [DOI:10.1109/IGARSS.2012.6351414]
25. Liu, J., J. Li, J. Liu and R. Cao. 2008. Integrated GIS/AHP-based flood risk assessment: a case study of Huaihe River Basin in China. J Nat Disasters, 17(6): 110-114.
26. Malczewski, J. 2006. GIS‐based multicriteria decision analysis: a survey of the literature. International Journal of Geographical Information Science, 20(7): 703-726. [DOI:10.1080/13658810600661508]
27. Miller, J.R. 1990. Morphometric assessment of lithologic controls on drainage basin evolution in the crawford upland, south-central indiana jerry r. miller, dale f. ritter,* and r. craig kochel American Journal of Science, 290: 569-599. [DOI:10.2475/ajs.290.5.569]
28. Mohammady, M., H.R. Pourghasemi and B. Pradhan. 2012. Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster-Shafer and weights-of-evidence models. Journal of Asian Earth Sciences, 6: 221-236. [DOI:10.1016/j.jseaes.2012.10.005]
29. Moore, I.D., R. Grayson and A. Ladson. 1991. Digital terrain modelling: a review of hydrological, geomorphological and biological applications. Hydrological processes 5(1): 3-30. [DOI:10.1002/hyp.3360050103]
30. Mukerji, A., C. Chatterjee and N.S. Raghuwanshi. 2009. Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models Journal of Hydrologic Engineering, 14(6): 647-652. [DOI:10.1061/(ASCE)HE.1943-5584.0000040]
31. Nampak, H., B. Pradhan and M.A. Manap. 2014. Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. Journal of Hydrology, 513: 283-300. [DOI:10.1016/j.jhydrol.2014.02.053]
32. Norouzi, G. and M. Taslimi. 2012. The impact of flood damages on production of Iran's Agricultural Sector. Middle East Journal of Scientific Research, 12: 921-926.
33. Paquette, J. and J. Lowry. 2013. Flood hazard modelling and risk assessment in the Nadi River Basin, Fiji, using GIS and MCDA. The South Pacific Journal of Natural and Applied Sciences, 30(1): 33-43. [DOI:10.1071/SP12003]
34. Poli, S., and Sterlacchini, S. 2007. Landslide representation strategies in susceptibility studies using weights-of-evidence modeling technique. Natural Resources Research, 16(2): 121-134. [DOI:10.1007/s11053-007-9043-8]
35. Pourghasemi, H.R., B. Pradhan and C. Gokceoglu. 2012. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran Natural Hazards, 63(2): 965-996. [DOI:10.1007/s11069-012-0217-2]
36. Pourghasemi, H., H. Moradi and S.F. Aghda. 2013. Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances Natural Hazards, 69(1): 749-779. [DOI:10.1007/s11069-013-0728-5]
37. Pourghasemi, H., H. Moradi and S.F. Aghda. 2013. Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances, Natural Hazards, 69(1): 749-779. [DOI:10.1007/s11069-013-0728-5]
38. Pourtaghi, Z.S. and H.R. Pourghasemi. 2014. GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeology Journal, 22(3): 643-662. [DOI:10.1007/s10040-013-1089-6]
39. Pradhan, B. and A. Youssef. 2011. A 100‐year maximum flood susceptibility mapping using integrated hydrological and hydrodynamic models: Kelantan River Corridor, Malaysia. Journal of Flood Risk Management, 4(3): 189-202. [DOI:10.1111/j.1753-318X.2011.01103.x]
40. Rahmati, O., H.R. Pourghasemi and H. Zeinivand. 2016. Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto International, 31(1): 42-70. [DOI:10.1080/10106049.2015.1041559]
41. Regmi, A.D., K.C. Devkota, K.Yoshida, B. Pradhan, H.R. Pourghasemi, T. Kumamotoand A. Akgun. 2014. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geosciences, 7(2): 725-742. [DOI:10.1007/s12517-012-0807-z]
42. Saaty, T.L. 1980. The analytic hierarchy process: planning, priority setting, resource allocation: McGraw-Hill, New York London.
43. Saaty, T.L. 1990. How to make a decision: the analytic hierarchy process. European journal of operational research, 48(1): 9-26. [DOI:10.1016/0377-2217(90)90057-I]
44. Sattari, M.H., M. Pouraza and R. Mirabassi NajafAbadi, 2016. Forecasting floods hourly river aharchai using of machine learning techniques Journal of Watershed Engineering and Management, 8(1): 115-127 (In Persian).
45. Scheuer, S., D. Haase and V. Meyer. 2011. Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: from a starting point view towards an end point view of vulnerability. Natural Hazards, 58(2): 731-751. [DOI:10.1007/s11069-010-9666-7]
46. Şener, Ş., E. Sener and R. Karagüzel. 2011. Solid waste disposal site selection with GIS and AHP methodology: a case study in Senirkent-Uluborlu (Isparta) Basin, Turkey. Environmental monitoring and assessment, 173(1-4): 533-554. [DOI:10.1007/s10661-010-1403-x]
47. Solín, Ľ. 2012. Spatial variability in the flood vulnerability of urban areas in the headwater basins of Slovakia. Journal of Flood Risk Management, 5(4): 303-320. [DOI:10.1111/j.1753-318X.2012.01153.x]
48. Srivastava, O. S., D. Denis, S.K. Srivastava, M. Kumar and N. Kumar. 2014. Morphometric analysis of a Semi Urban Watershed, trans Yamuna, draining at Allahabad using Cartosat (DEM) data and GIS International Journal of Engineering Science, 3: 71-79.
49. Tehrany, M.S., M.J., Lee, B. Pradhan, M. N. Jebur and S. Lee. 2014. Flood susceptibility mapping using integrated bivariate and multivariate statistical models. Environmental earth sciences, 72(10): 4001-4015. [DOI:10.1007/s12665-014-3289-3]
50. Tehrany, M.S., B. Pradhan and M.N. Jebur. 2013. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS, Journal of Hydrology, 504: 69-79. [DOI:10.1016/j.jhydrol.2013.09.034]
51. Tehrany, M.S., B. Pradhan and M.N. Jebur. 2015. Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stochastic Environmental Research and Risk Assessment, 29(4): 1149-1165. [DOI:10.1007/s00477-015-1021-9]
52. Tierney, K.J., M.K. Lindell and R.W. Perry. 2001. Facing the unexpected: Disaster preparedness and response in the United States: Joseph Henry Press.
53. Van Westen, C., N. Rengers and R. Soeters. 2003. Use of geomorphological information in indirect landslide susceptibility assessment Natural Hazards, 30(3): 399-419. [DOI:10.1023/B:NHAZ.0000007097.42735.9e]
54. Wu, S.J., H.C. Lien and C.H. Chang. 2010. Modeling risk analysis for forecasting peak discharge during flooding prevention and warning operation. Stochastic Environmental Research and Risk Assessment, 24(8): 1175-1191. [DOI:10.1007/s00477-010-0436-6]
55. Xu, C., X. Xu, F. Dai, J. Xiao, X. Tan and R.Yuan. 2012. Landslide hazard mapping using GIS and weight of evidence model in Qingshui river watershed of 2008 Wenchuan earthquake struck region. Journal of Earth Science, 23: 97-120. [DOI:10.1007/s12583-012-0236-7]
56. Ying, X., G.M. Zeng, G.Q. Chen, L. Tang, K.L. Wang and D.Y. Huang. 2007. Combining AHP with GIS in synthetic evaluation of eco-environment quality-a case study of Hunan Province, China. Ecological modelling, 209(2): 97-109. [DOI:10.1016/j.ecolmodel.2007.06.007]
57. Youssef, A.M., B. Pradhan, H.R. Pourghasemi and S. Abdullahi. 2015. Landslide susceptibility assessment at Wadi Jawrah Basin, Jizan region, Saudi Arabia using two bivariate models in GIS Geosciences Journal, 19(3): 449-469. [DOI:10.1007/s12303-014-0065-z]
58. Zhu, C. and X. Wang. 2009. Landslide susceptibility mapping: a comparison of information and weights-of-evidence methods in Three Gorges Area. Paper presented at the Environmental Science and Information Application Technology, 2009. ESIAT 2009. International Conference on. [DOI:10.1109/ESIAT.2009.187]
59. Zou, Q., J. Zhou, C. Zhou, L. Song and J. Guo. 2013. Comprehensive flood risk assessment based on set pair analysis-variable fuzzy sets model and fuzzy AHP. Stochastic Environmental Research and Risk Assessment, 27(2): 525-546. [DOI:10.1007/s00477-012-0598-5]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.