دوره 7، شماره 14 - ( پاییز و زمستان 1395 )                   جلد 7 شماره 14 صفحات 215-206 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Subsurface Flow Simulations to Determine Potential Areas of Groundwater Dam Using SWAT Model (Case Study: Doroongar Watershed, Dargaz). jwmr. 2017; 7 (14) :215-206
URL: http://jwmr.sanru.ac.ir/article-1-771-fa.html
زاهدی احسان، طالبی علی، طباطبائی سید عباس، رئیسی آرزو، آسیایی مجید. شبیه‌سازی جریان زیرسطحی برای تعیین مناطق مستعد احداث سد زیرزمینی با استفاده از مدل SWAT (مطالعه موردی: حوزه آبخیز رودخانه درونگر درگز). پ‍‍ژوهشنامه مديريت حوزه آبخيز. 1395; 7 (14) :215-206

URL: http://jwmr.sanru.ac.ir/article-1-771-fa.html


چکیده:   (943 مشاهده)

سدهای زیرزمینی سازه­هایی هستند که جریان طبیعی آب­های زیرزمینی را مسدود نموده و سبب ایجاد ذخایر آبی در زیرزمین می­شوند. در این مطالعه ابتدا با استفاده از منطق بولین و پارامترهای زمین­شناسی، کاربری اراضی، شیب، فاصله از گسل و فاصله از جاده، 18 منطقه مستعد احداث سد زیرزمینی مشخص شد. در بحث سد زیرزمینی، جریان زیرسطحی از اهمیت بالایی برخوردار است به طوری که اگر با احداث سد در زیر سطح زمین آن منطقه دارای جریان­های زیرسطحی مناسب نباشد احداث سد با وجود مطالعات و هزینه­های فراوان با شکست مواجه می­شود. لذا در این تحقیق  از مدل SWAT برای شبیه­سازی بیلان آب و جریان زیرسطحی حوزه درونگر استفاده شد و با استفاده از آن مناطقی که دارای جریان زیرسطحی مناسب هستند شناسایی و از این پارامتر برای مکان­یابی و اولویت­بندی مناطق مستعد استفاده شد. با اجرای مدل SWAT در حوزه آبخیز درونگر در مرحله واسنجی مقادیر  ضریب همبستگی، ضریب همبستگی وزنی و شاخص NS (نش ساتکلیف) به ترتیب برابر 77/0، 75/0 و 68/0 و در مرحله اعتبارسنجی برابر 71/0، 67/0 و 61/0 حاصل شد که این ضرایب نشان می­دهد مدل SWAT با توجه به نتایج حاصل از شبیه‌سازی، در حوزه درونگر کارایی قابل قبولی دارد. نتایج حاصل شده از شبیه­سازی جریان زیرسطحی نشان می­دهد که مناطق شمالی و جنوبی حوزه درونگر دارای جریان زیرسطحی بالاتری نسبت به مناطق مرکزی حوزه می­باشد که این موضوع نشان دهنده آن است که این مناطق جهت احداث سد زیرزمینی نسبت به سایر مناطق استعداد بیش­تری دارا می­باشد.

متن کامل [PDF 728 kb]   (558 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: ۱۳۹۵/۱۱/۵ | پذیرش: ۱۳۹۵/۱۱/۵ | انتشار: ۱۳۹۵/۱۱/۵

فهرست منابع
1. Alizadeh. A., A. Izadi, K. Davari, A. Ziaei, N.S. Akhavan and Z. Hamidi. 2013. Estimation of Actual Evapotranspiration at Regional-Annual Scale Using SWAT. Iranian Journal of lrrigation and Drainage. 2: 243-258 (In Persian).
2. Birhanu, B.Z., P.M. Ndomba and F.W. Mtalo. 2007. Aplication of SWAT Model for Montanious Catchment. Journal of Water for Arba Minch, 30: 182-187.
3. Chezgi, J. 2009. Site Selection of Underground Dam Using Decision Support Systems and GIS in West of Tehran Province. M.Sc. Thesis Watershed, Tarbiat Modares University (TMU) (In Persian).
4. Danilenko, A., E. Dickson and M. Jacobsen. 2010. Climate Change and Urbanwater Utilities: Challenges and Opportunities. Water Working Notes, 24: 54235.
5. Brahimi, H. 2011. Performance Evaluation of SWAT Model to Simulation of Runoff and Sediment Yield in Doiraj River Basin in Ilam Province. M.Sc Thesis Watershed, Zabol University. (In Persian).
6. Forzieri, G., M. Gardenti, F. Caparrini and F. Castelli. 2008. A methodology for the pre-selection of suitable sites for surface and underground small dams in arid areas: A case study in the region of Kidal, Mali. Journal of Physics and Chemistry of the Earth, 33: 74-85. [DOI:10.1016/j.pce.2007.04.014]
7. Golmayi, H. and M.Q. Ashtiyani. 2004. Underground Dams for Water Storage in Small Scale, 97 pp. (In Persian)
8. Ishida, S., T. Tsuchihara, S. Yoshimoto and M. Imaizumi. 2011. Sustainable Use of Groundwater with Underground Dams, JARQ, 45: 51-61. [DOI:10.6090/jarq.45.51]
9. Jamali, I.A., B. Olofsson and U. Mörtberg. 2013. Locating suitable sites for the construction of subsurface dams using GIS. Environ. Earth Science, 70: 2511-2525. [DOI:10.1007/s12665-013-2295-1]
10. Murty, P.S., A. Pandey and P. Suryavanshi. 2013. Application of Semi-Distributed Hydrological Model for Basin Level Water Balance of the Ken Basin of Central India. Article First Published Online, DOI: 10.1002/hyp.9950 [DOI:10.1002/hyp.9950]
11. Ndomba, P.M. and B.Z. Birhanu. 2008, Problems and Prospects of SWAT Model Applications in NILOTIC Catchments, Nile Basin Water Engineering Scientific Magazine, pp: 51-52
12. .Neitch, S.L., J.G. Arnold, J.R. Kiniry and J.R. Williams. 2005. Soil and water assessment tool documentation, user's manual, Temple, Texas, USA, 494 pages.
13. Nilsson, A. 1988. Groundwater Dams for Small-Scale Water Supply, Intermediate Technology Publications, London. 78 pp. [DOI:10.3362/9781780442297]
14. Orient, Q.R., M. Hoogmoed, M. Ertsen, J. Foppen, R. Hut and A. Vries. 2009. Measuring and Modeling Hydrological Processes of Sand-Storage Dams on Different Spatial Scales, Physics and Chemistry of the Earth, 34: 289-298. [DOI:10.1016/j.pce.2008.06.057]
15. Rostamian, R., A. Jaleh, M. Afyuni, S.F. Mousavi, M. Heidarpour, A. Jalalian and K. Abbaspour. 2008. Application of a SWAT Model for Estimating Runoff and Sediment in Two Mountainous Basins in Central Iran. Hydrological Sciences, 53: 977-988, 41-52.
16. Salami, H. 2006. Determining the Suitable Locations for Subsurface Dams in Volcanic Areas Using Remote Sensing. (Case study: Northern Mountains Karkas). M.Sc. Thesis Shahid Beheshti University Hydrology, 143 pp (In Persian).
17. Stellman, K., H. Fuelberg, R. Garza and M. Mullusky. 2001, An Examination of Radar and Rain Gauge Derived Mean Areal Precipitation over Georgia Watersheds, Weather Forcast, 16: 133-144. https://doi.org/10.1175/1520-0434(2001)016<0133:AEORAR>2.0.CO;2 [DOI:10.1175/1520-0434(2001)0162.0.CO;2]
18. Shimelis, G., B. Dargahi, S. Ragahavan and M. Assefa. 2010. Modeling of Sediment Yield from Anjeni-Gauged Watershed, Ethiopia Using SWAT model Journal of the American Water Resources Association, 46: 514-526. [DOI:10.1111/j.1752-1688.2010.00431.x]
19. Sun, H. and P.S. Cornish. 2005. Estimating Shallow Groundwater Recharge in the Headwaters of the Liverpool Plains Using SWAT. Hydrological Processes, 19: 795-807. [DOI:10.1002/hyp.5617]
20. Tabatabaei, Y.J. and M. Nasiri. 2000. Underground Dams Way to Compensate for Drought. The 1st National Conference Evaluates Strategies for Coping with Drought, 553-546 (In Persian).
21. Wang,Y. and K. Brubaker. 2013. Implementing a Nonlinear Groundwater Module in the Soil and Water Assessment Tool (SWAT). Hydrological Processes, DOI: 10.1002/hyp.9893. [DOI:10.1002/hyp.9893]
22. Yilmaz, M. 2003. Control of Groundwater by Underground Dams. Thesis Submitted to the Graduate School of Natural and Applied Sciences. The Middle East Technical University. 96 pp.
23. Yoshimoto, S., T. Tsuchihara, S. Ishida and M. Imaizumi. 2011. Groundwater flow and transport and potential sources of groundwater nitrates in the Ryukyu Limestone as a mixed flow aquifer in Okinawa Island, Japan. Paddy Water Environ, doi:10.1007/s10333-011-0252-8 [DOI:10.1007/s10333-011-0252-8]
24. Zahedi, E. 2013. Determining the Suitable Sites for Groundwater Dams Construction Using the Water Balance Simulation (SWAT model) and Analytical Network Process (ANP), (Case Study: Dorungar Watershed, Dargaz, M.Sc. Thesis, Yazd University, 160 pp (In Persian).

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA code

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2018 All Rights Reserved | Journal of Watershed Management Research

Designed & Developed by : Yektaweb