Volume 8, Issue 16 (2-2018)                   jwmr 2018, 8(16): 34-43 | Back to browse issues page


XML Persian Abstract Print


Abstract:   (4535 Views)
Flood routing in river is one of important issues in water engineering projects. Hydraulic routing is common in especially in river that has branches and river that have not basin information. So as to need obtain cross section and slops in all interval of river that Muskingum helps by saving time and cost. In this paper, a Water Cycle Algorithm (WCA) is proposed for the parameter estimation of the nonlinear Muskingum model. The results of the developed model were compared with those of the other meta­heuristic algorithms including Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Harmony Search Algorithm (HS) and Imperialist Competitive Algorithm (ICA). In the proposed technique, an indirect penalty function approach is imposed on the model to prevent negativity of outflows and storages. The proposed algorithm finds the global or near-global minimum regardless of the initial parameter values with fast convergence. The proposed algorithm found the best solution among 5 different methods. The results demonstrate that the proposed algorithm can be applied confidently to estimate optimal parameter values of the nonlinear Muskingum model. Moreover, this algorithm may be applicable to any continuous engineering optimization problems.
Full-Text [PDF 1347 kb]   (3656 Downloads)    
Type of Study: Research | Subject: Special
Received: 2018/01/29 | Revised: 2018/02/25 | Accepted: 2018/01/29 | Published: 2018/01/29

References
1. Baghipour, R., S.M. Hosseini and Z. Boor. 2014. A Water Cycle Algorithm for Optimal Allocation of DGs in Distribution System Considering Environmental Profit. International Journal of Mechatronics, Electrical and Computer Technology, 4: 430-45 (in Persian).
2. Barati, R., G. Akbari and M. Fadafan. 2010. Presentation an algorithm for estimating parameters of nonlinear Muskingum method. 9th Conference of Iran hydraulic, Tehran (in Persian).
3. Bozorg Haddad, O., M. Moravej and H.A. Loáiciga. 2014. Application of the Water Cycle Algorithm to the Optimal Operation of Reservoir Systems. Journal of Irrigation and Drainage Engineering, 10 (in Persian). [DOI:10.1061/(ASCE)IR.1943-4774.0000832]
4. Chen, J. and X. Yang. 2007. Optimal parameter estimation for Muskingum model based on gray encoded accelerating genetic algorithm. Communications in Nonlinear Science and Numerical Simulation, 12: 849-858. [DOI:10.1016/j.cnsns.2005.06.005]
5. Chu, H.J. and L.C. Chang. 2009. Applying particle swarm optimization to parameter estimation of the nonlinear Muskingum model. Journal of Hydrologic Engineering, 14: 1024-1027. [DOI:10.1061/(ASCE)HE.1943-5584.0000070]
6. Das, A. 2004. Parameter estimation for Muskingum models. Journal of Irrigation and Drainage Engineering, 2: 140-147. [DOI:10.1061/(ASCE)0733-9437(2004)130:2(140)]
7. Eskandar, H., A. Sadollah., A. Bahreininejad and M. Hamdi. 2012. Water cycle algorithm- A novel meta-heuristic optimization method for solving constrained engineering optimization problems. Computers and Structures, 110: 151-166. [DOI:10.1016/j.compstruc.2012.07.010]
8. Eskandar, H., A. Sadollah and A. Bahreininejad. 2013. Weight optimization of truss structures using water cycle algorithm. International Journal of Optimization in Civil Engineering, 1: 115-129.
9. Geem, Z.W. 2006. Parameter estimation for the nonlinear Muskingum model using the BFGS technique. Journal of Irrigation and Drainage Engineering, 5: 474-478. [DOI:10.1061/(ASCE)0733-9437(2006)132:5(474)]
10. Gill, M.A. 1978. Flood routing by Muskingum method. Journal of Hydrology, 36: 353-363. [DOI:10.1016/0022-1694(78)90153-1]
11. Hamedi, F., O. Bozorg Haddad and A. Vatan khah. 2012. Improve nonlinear Muskingum model by a new combinatorial storage equation. 5th National Conference on Water Resources Management, Tehran (in Persian).
12. Karahan, H., G. Gurarslan., A.M. ASCE and Z.W. Geem. 2013. Parameter Estimation of the Nonlinear Muskingum Flood-Routing Model Using a Hybrid Harmony Search Algorithm. Journal of Hydrologic Engineering, 18: 352-360. [DOI:10.1061/(ASCE)HE.1943-5584.0000608]
13. Kim J.H., Z.W. Geem and E.S. Kim. 2001. Parameter estimation of the nonlinear Muskingum model using harmony search. Journal of the American Water Resources Association, 37:1131-1138. [DOI:10.1111/j.1752-1688.2001.tb03627.x]
14. McCarthy, G.T. 1938. The unit hydrograph and flood routing. Proc. Conf. of North Atlantic Division, U.S. Army Corps of Engineers, Washington, DC.
15. Mirzazade, P. 2013. Investigation flood routing methods in river and reservoirs. M.Sc Thesis. Sistan and Baluchestan University. Civil college. Sistan and Baluchestan province. Iran. 86 (in Persian).
16. Mohammad Ghaleni, M., O. Bozorg Haddad and K. Ebrahimi. 2010. Optimization nonlinear Muskingum model's parameters by simulated optimization Nord algorithm. Journal of Water and Soil, 24: 908-919 (in Persian).
17. Mohan, S. 1997. Parameter estimation of nonlinear Muskingum models using genetic algorithm. Journal of Hydraulic Engineer, 123: 137-142. [DOI:10.1061/(ASCE)0733-9429(1997)123:2(137)]
18. Nourali, M., B. Ghahraman., M, Pourreza Bilondi and K. Davary. 2017. Uncertainly estimation of HEC-HMS floof simulation model using Markov Chain Monte Carlo algorithm. Journal of watershed management research, 8:235-249.
19. Premual, M. and K.G. RangaRaju. 1998. Variable-parameter stage-hydrograph routing method: I Theory. Journal of Hydrologic Engineering, ASCE, 3: 109-114. [DOI:10.1061/(ASCE)1084-0699(1998)3:2(109)]
20. Premual, M., P.E. O'Donnell and K.G. RangaRaju. 2001. Field application of a variable parameter Muskingum-Cunge method, Journal of Hydrologic Engineering, 6: 196-207. [DOI:10.1061/(ASCE)1084-0699(2001)6:3(196)]
21. Saghi, H. and A. Delbari. 2013. Investigation performance linear and nonlinear models for routing focus Muskingum flood. 15th Fluid Dynamic Conference, 7, Bandar Abbas (in Persian).
22. Samani, H and G. Shamsipour. 2003. Flood routing by nonlinear optimization. Hydraulic magazine, 42: 55- 59(in Persian). [DOI:10.1080/00221686.2004.9641183]
23. Shaabani Bazneshin, A., A. Emadi and R. Fazloula. 2016. Investigation the flooding poteitial of basins and determination flood producing areas (Case study: Neka Basin). Journal of watershed management research, 7: 20-28. [DOI:10.29252/jwmr.7.14.28]
24. Sheikh, Z., A. Dehvari and M. Ebrahimi. 2016. Regional flood frequency analysus application of canonical kriging method on Mazandaran Province Watersheds. Journal of watershed management research, 7: 38-47 (In Persian). [DOI:10.29252/jwmr.7.14.47]
25. Singh, V.P. and P.D. Scarlatos. 1987. Analysis of nonlinear Muskingum flood routing. Journal of Hydrologic Engineering, 113: 61-79. [DOI:10.1061/(ASCE)0733-9429(1987)113:1(61)]
26. Tung, Y.K. 1985. River flood routing by nonlinear Muskingum method. Journal of Hydrologic Engineering, 111: 1447-1460. [DOI:10.1061/(ASCE)0733-9429(1985)111:12(1447)]
27. Wilson, E.M. 1974. Engineering Hydrology, MacMillan Education, Hampshire, United Kingdom. 348.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.