دوره 12، شماره 23 - ( بهار و تابستان 1400 )                   جلد 12 شماره 23 صفحات 129-119 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karimi Sangchini E, Ownegh M, Sadoddin A, Zarghami M, Vayskarami I. (2021). Developing a Model for the Integrated Management of Water and Soil Resources in the Hableh-Rud River Basin Using the System Dynamics Approach. jwmr. 12(23), 119-129. doi:10.52547/jwmr.12.23.119
URL: http://jwmr.sanru.ac.ir/article-1-1032-fa.html
کریمی سنگچینی ابراهیم، اونق مجید، سعدالدین امیر، ضرغامی مهدی، ویسکرمی ایرج. ارائه مدل مدیریت جامع منابع آب و خاک حوضه رودخانه حبله رود با استفاده از رویکرد پویایی سامانه پ‍‍ژوهشنامه مديريت حوزه آبخيز 1400; 12 (23) :129-119 10.52547/jwmr.12.23.119

URL: http://jwmr.sanru.ac.ir/article-1-1032-fa.html


بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان لرستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، خرم آباد، ایران
چکیده:   (2518 مشاهده)
    در این تحقیق، مدل پویایی سامانه به ­منظور افزایش سطح ادراک سامانه آبخیز و تسهیل مدیریت جامع و پایدار منابع آب و خاک در حوضه رودخانه حبله ­رود ارائه داده شد. مدل مفهومی شامل زیرسامانه ­های فیزیکی، اقتصادی و اجتماعی بر مبنای روابط علی معلولی و بازخوردها ترسیم شد. نمودار ذخیره- جریان در نرم­افزار Vensim اجرا شد. صحت­ سنجی مدل با آزمون­های حدی و آزمون­های ارزیابی عملکرد مدل انجام گرفت. مدل پویایی سامانه با ضریب نش- ساتکلیف و ضریب تبیین به ­ترتیب بیش‌تر از 0/62و 0/63 برای همه متغیرها صحت قابل ­قبولی داشته‌اند. سناریوهای مدیریت پوشش گیاهی، اقلیمی، مدیریت منابع آب و الگوی کشت با وضعیت موجود مقایسه شدند. نتایج حاصل از تحلیل سناریوهای مورد بررسی در یک دوره 30 ساله نشان داد که سناریوی مدیریت کارآیی آب کشاورزی به ­عنوان سناریوی برتر به­ ترتیب 14/3 و 11/1 درصد حجم آب زیرزمینی و نفوذ آب را نسبت به وضع موجود بهبود می­بخشد. از نظر متغیرهای فرسایش و رسوب، سناریوی فعالیت­های اصلاح مراتع به ­ترتیب با 7/6 و  5/3 درصد کاهش نسبت به وضع موجود به­ عنوان سناریوی برتر شناخته شدند. بیش‌ترین کاهش در هدررفت‌­های نیتروژن و فسفر به ­ترتیب با 8 و 6/4درصد نسبت به وضع موجود، با اجرای سناریوی اصلاح مراتع حاصل شد. سناریوی پرداخت 50 درصد درآمد خدمات زیست‌بومی با بهبود وضعیت در حدود 46 درصد در یک دوره 30 ساله نسبت به وضع موجود به ­عنوان سناریوی برتر شناخته شد. ذینفعان تمایل بیش‌تر خود را برای مشارکت در پروژه­ های مربوط به مدیریت مزرعه (امتیاز تجمعی شاخص پذیرش مردمی 85/6) نشان دادند. مدل پویایی سامانه برای افزایش ادراک ذینفعان از روابط علی و معلولی و بازخوردهای سامانه سودمند است.
متن کامل [PDF 1522 kb]   (606 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مديريت حوزه های آبخيز
دریافت: 1398/4/31 | ویرایش نهایی: 1400/5/26 | پذیرش: 1398/11/26 | انتشار: 1400/5/26

فهرست منابع
1. Barati, A.K., H. Azadi and J. Scheffran. 2019. A system dynamics model of smart groundwater governance. Agricultural Water Management, 221: 502-518. [DOI:10.1016/j.agwat.2019.03.047]
2. Baron, J.S., N.L. Poff, P.L. Angermeier, C.N. Dahm, P.H. Gleick, R.B. Jackson, C.A. Johnston, B.D. Richter and A.D. Steinman. 2002. Meeting ecological and social needs for fresh water. Applied Ecology, 12(5): 1260-1274. [DOI:10.1890/1051-0761(2002)012[1247:MEASNF]2.0.CO;2]
3. Bastin, G., P. Thomas, P. Novelly, M. Fleming and C. Baulderstone. 2008. ACRIS landscape function update 2006-2010 Updated information to that provided in rangelands 2008 - Taking the pulse. Published on behalf of the ACRIS Management Committee by the National Land and Water Resources Audit, Canberra. http://www.environment.gov.au/land/rangelands/acris/index.html
4. Blomley, T. 2006. Mainstreaming participatory forestry within the local government reform process in Tanzania. International institute for Environmental and Development. Gatekeeper series, 26 p.
5. Brooks, K.N. and M. Tayaa. 2002. Planning and managing soil and water resources in dry lands: role of watershed management. IALC Conference published in the Arid Lands Newsletter. International Arid Lands Consortium, 18 p.
6. Chen, Y., D. Zhang, Y. Sun, X. Liu, N. Wang and H.G. Savenije. 2005. Water demand management: A case study of the Heihe River Basin in China. Physics and Chemistry of the Earth, 30: 408-419. [DOI:10.1016/j.pce.2005.06.019]
7. Elmahdi, A., H. Malano and T. Etchells. 2007. Using system dynamics to model water -reallocation. Environmentalist, 27: 3-12. [DOI:10.1007/s10669-007-9010-2]
8. Gastelum, J.R., G. Krishnamurthy, N. Ochoa, S. Sibbett, M. Armstrong and P. Kalaria. 2018. The Use of System Dynamics Model to Enhance Integrated Resources Planning Implementation. Water Resources Management, 32: 2247-2260. [DOI:10.1007/s11269-018-1926-4]
9. Gohari, A., S. Eslamian, A. Mirchi, J. Abedi-Koupaei, A. Massah Bavani and K. Madani. 2013. Water transfer as a solution to water shortage: A fix that can backfire. Journal of Hydrology, 491: 23-39. [DOI:10.1016/j.jhydrol.2013.03.021]
10. Hassanzadeh, E., M. Zarghami and Y. Hassanzadeh. 2012. Determining the main factors in declining the Urmia lake level by using system dynamics modeling. Water Resource Management, 26:129-145. [DOI:10.1007/s11269-011-9909-8]
11. Karimi Sangchini, E., M. Ownegh and A. Sadoddin. 2016. Landslide Hazard Management for Two Normal and Critical Scenarios in the Chehel - Chay Watershed. Golestan Province. Journal of Wound Management and Research, 7(13): 181-173. [DOI:10.18869/acadpub.jwmr.7.13.181]
12. Mahini, A.R. 2013. Capability evaluation and land use planning of integrated watershed management in Hablerud River Basin. Pooneh publication, Tehran, 368 pp (In persian).
13. McCuen, R., Z. Knight and A. Cutter. 2006. Evaluation of the Nash-Sutcliffe Efficiency Index. Journal of Hydrologic Engineering, 10.1061/(ASCE)1084-0699(2006)11:6(597): 597-602. [DOI:10.1061/(ASCE)1084-0699(2006)11:6(597)]
14. Papachristos, G. 2019. System dynamics modelling and simulation for sociotechnical transitions research. Environmental Innovation and Societal Transitions, 31: 248-261. [DOI:10.1016/j.eist.2018.10.001]
15. Ruiz-Malle'n, I., E. Corbera, D. Calvo-Boyero and V. Reyes-Garcı'a. 2015. Participatory scenarios to explore local adaptation to global change in biosphere reserves: Experiences from Bolivia and Mexico. Environmental Science and Policy, 54: 398-408. [DOI:10.1016/j.envsci.2015.07.027]
16. Sabbaghi, M., A. Shahnazari and A.N. Ziaei. 2018. Simulation and operation evaluation of Shahid Yaghoobi dam by using system dynamic. Journal of Watershed Management Research, 8(16):188-199. [DOI:10.29252/jwmr.8.16.188]
17. Sadoddin, A., E. Alvandi, and V.B. Sheikh. 2015. Developing a Decision Support System for Participatory and Integrated Management of the Chel-Chai Watershed, Golestan Province. Journal of Watershed Management Research, 6(11): 124-136.
18. Sadoddin, A., R.A. Letcher, A.J. Jakeman and L.T.H. Newhamb. 2005. A Bayesian decision network approach for assessing the ecological impacts of salinity management. Journal of Mathematics and Computers in Simulation, 69: 162-176. [DOI:10.1016/j.matcom.2005.02.020]
19. Sharawat, I., R. Dahiya, R.P. Dahiya, T.R. Sreekrishnan and S. Kumari. 2019. Policy options for managing the water resources in rapidly expanding cities: a system dynamics approach Sustain. Water Resource Management, 5(3): 1201-1215. [DOI:10.1007/s40899-018-0296-7]
20. Simonovic, S.P. and S. Ahmad. 2000. System dynamics modeling of reservoir operation for flood management. Journal of computing in Civil Engineering, 14(3): 190-199. [DOI:10.1061/(ASCE)0887-3801(2000)14:3(190)]
21. Solaimani, K., S. Modallaldoust and S. Lotfi. 2009. Investigation of land use changes on soil erosion process using geographical information system. International Journal of Environmental Science Technology, 6(3): 415-424. [DOI:10.1007/BF03326080]
22. Sterman, J. 2000. Business dynamics: systems thinking for a complex world. Irwin/McGraw-Hill, 1008 pp.
23. Stojkovic, M. and S.P. Simonovic. 2019. System Dynamics Approach for Assessing the Behaviour of the Lim Reservoir System (Serbia) under Changing Climate Conditions. Water, 11, 1620; doi:10.3390/w11081620. [DOI:10.3390/w11081620]
24. Sun, Y., N. Liu, J. Shang and J. Zhang. 2016. Sustainable utilization of water resources in China: A system dynamics model. Journal of Cleaner Production, 142. 10.1016/j.jclepro.2016.07.110. [DOI:10.1016/j.jclepro.2016.07.110]
25. Tseng, C.H., I.H. Lee and Y.C. Chen. 2019. Evaluation of hexavalent chromium concentration in water and its health risk with a system dynamics model. Science of the Total Environment, 669: 103-111. [DOI:10.1016/j.scitotenv.2019.03.103]
26. Weng, S.Q., G.H. Huang and Y.P. Li. 2010. An integrated scenario-based multi-criteria decision support system for water resources management and planning - A case study in the Haihe River Basin. Expert Systems with Applications, 37: 8242-8254. [DOI:10.1016/j.eswa.2010.05.061]
27. Yeh, S.C., C.A. Wang and H.C. Yu. 2006. Simulation of soil erosion and nutrient impact using an integrated system dynamics model in a watershed in Taiwan. Environmental Modeling and Software, 21: 937-948. [DOI:10.1016/j.envsoft.2005.04.005]
28. Youa, Y.Y., W.B. Jin. Q.X. Xiong, L. Xu, T.C. Ai and B.L. Li. 2012. Simulation and validation of on-point source nitrogen and phosphorus loads under different land uses in Sihu Basin, Hubei Province. China. The 18th Biennial Conference of International Society for Ecological Modelling Procedia Environmental Sciences, 13: 1781. [DOI:10.1016/j.proenv.2012.01.172]
29. Zare, F., E. Sondoss, A. Bagheri, E. Nabavi and A.J. Jakemane. 2019. Improved integrated water resource modelling by combining DPSIR and system dynamics conceptual modelling techniques. Journal of Environmental Management, 246: 27-41. [DOI:10.1016/j.jenvman.2019.05.033]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb