دوره 12، شماره 24 - ( پاییز و زمستان 1400 1400 )                   جلد 12 شماره 24 صفحات 64-54 | برگشت به فهرست نسخه ها


XML English Abstract Print


گروه مهندسی آب دانشگاه اراک
چکیده:   (2170 مشاهده)
چکیده مبسوط
مقدمه و هدف: امروزه با توسعه بخش شهری، صنعتی و کشاورزی استفاده از آب­های زیرزمینی اهمیت بیشتری یافته است. بنابراین پایداری و توسعه بهره برداری از آب های زیرزمینی برای انواع مشتریان و اهداف مختلف، امری ضروری است که ویژگی های کمی و کیفی آن مورد بررسی و ارزیابی قرار گیرد.
مواد و روش­ ها: شبکه عصبی تطبیقی فازی (FANN) و روش زمین آماری مبتنی بر سیستم اطلاعات جغرافیایی برای دشت کمیجان، استان مرکزی، ایران استفاده شده است. ابتدا داده های 36 حلقه چاه از شرکت آب و فاضلاب روستایی جمع آوری شد. سپس با استفاده از انواع نیمه واریوگرام مانند: گوسی، خطی، کروی و همچنین کریجینگ و کوکریجینگ، مدل زمین آماری با استفاده از شاخص‌های R2 و RMSE مورد ارزیابی قرار گرفت. سپس برای مدل شبکه عصبی تطبیقی فازی توابع عضویت مانند: مثلثی، زنگ تعمیم یافته و گاوسی بررسی شد و بهترین مدل با استفاده از شاخص­ های R2 و RMSE تعیین شد.
یافته­ها: با توجه به نتایج R2 و RMSE در مدل های زمین آماری، کروی، خطی و نمایی به ترتیب برای متغیرهای EC، TDS و pH بهترین انتخاب شدند. همچنین بر اساس نیمه واریوگرام، روش کریجینگ عملکرد بهتری نسبت به روش کوکریجینگ برای تمامی متغیرهای مورد مطالعه با ضریب تعیین بالا به ترتیب 0/73، 0/66 و 0/85 برای EC، TDS و pH و کمتر در RMSE دارد .نتایج نشان داد که در شبکه عصبی تطبیقی ​​فازی، متغیر EC، تابع زنگ تعمیم یافته فازی با ضریب همبستگی 0/98 و میانگین مربعات خطای 144/54 در مرحله آزمون، خوب است. برای متغیر TDS، تابع گاوسی با ضریب همبستگی 0/98 و میانگین مربعات خطای 0/33 119 در مرحله آزمون بهترین است. همچنین برای متغیر pH، تابع زنگ تعمیم یافته با ضریب همبستگی 0/99 و میانگین مربعات خطای 103/10 در مرحله آزمون عملکرد بهتری نسبت به سایر توابع فازی در مدل سازی دارد. با مقایسه نتایج شبکه عصبی تطبیقی ​​زمین آماری و فازی می توان دریافت که مدل FANN نسبت به مدل زمین آماری کارایی بالاتری دارد.
نتیجه­ گیری: نتایج نقشه‌های پهنه‌بندی نشان داد که در قسمت شمالی دشت EC کم و در مرکز و غرب EC بالای µSiemens/cm 2000 است. همچنین برای متغیر TDS، در قسمت شمالی دشت کم و در جنوب و جنوب غربی بالای 1000 میلی­ گرم در لیتر است. همچنین تغییرات مقدار pH  نشان داد که تغییرات این متغیر کم بوده و بیشترین میزان pH در قسمت شمالی و کمترین آن در قسمت جنوبی است.
 
متن کامل [PDF 1258 kb]   (457 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: هيدرولوژی
دریافت: 1398/8/5 | ویرایش نهایی: 1400/12/3 | پذیرش: 1399/5/12 | انتشار: 1400/6/10

فهرست منابع
1. Abareshi, F., M. Meftah Halghi, H. Sanikhani and A.A. Dehghani. 2014. Comparison of three intelligence techniques for predicting water table depth fluctuations (Case study: Zarringol plain). Journal of Water and Soil Conservation, 21(1): 163-180 (In Persian).
2. Alidoosti Shahraki, M., V. Azaimi and S.S. Sharifi Bonab. 2013. Comparison of Neural Network and Neural Network Wavelet Methods in Estimation of Effective Rainfall using meteorological data. Proceedings of the 2nd International Conference on Plant, Water, Soil and Air Modeling, 10 pp (In Persian).
3. Azimi, S., M.A. Moghaddam and S.H. Monfared. 2019. Prediction of annual drinking water quality reduction based on Groundwater Resource Index using the artificial neural network and fuzzy clustering. Journal of Contaminant Hydrology, 220: 6-17. [DOI:10.1016/j.jconhyd.2018.10.010]
4. Baalousha, H. 2010. Assessment of a groundwater quality monitoring network using vulnerability mapping and geostatistics: A case study from Heretaunga Plains. New Zealand. Agricultural Water Management, 97(2): 240-246. [DOI:10.1016/j.agwat.2009.09.013]
5. Bayat, M. 2014. Preparation of Soil Salinity Map in Range in the Khondab using Remote Sensing, Case Study: Chezan Plain, M.Sc. thesis. Islamic Azad University, Arak Branch, 77 pp (In Persian).
6. Bose, N.K. and P. Liang. 1996. Neural network fundamentals with graphs, algorithms, and applications, McGraw-Hill Series in Electrical and Computer Engineering, 478 pp, McGraw-Hill College, New York.
7. Bui, D.T., K. Khosravi, M. Karimi, G. Busico, Z.S. Khozani, H. Nguyen, M. Mastrocicco, D. Tedesco, E. Cuoco and N. Kazakis. 2020. Enhancing nitrate and strontium concentration prediction in groundwater by using new data mining algorithm. Science of the Total Environment, 136836. [DOI:10.1016/j.scitotenv.2020.136836]
8. Ghasemi, S., N. Ganji Khorramdel, M. Mardian. 2015. An Analysis in exceed probability of threshold for EC and pH waterground resource using geostatistical methods in the Arak- Farahan plain. Applied Research of Water Sciences, 1(1): 71-82 (In Persian).
9. Ghorbani, M.A., R.C. Deo, M.H. Kashani, M. Shahabi and S. Ghorbani. 2019. Artificial intelligence-based fast and efficient hybrid approach for spatial modelling of soil electrical conductivity. Soil and Tillage Research, 186: 152-164. [DOI:10.1016/j.still.2018.09.012]
10. Haji hashemi jazi, M.R., M. Atashgahi and A.H. Hamidian. 2011. Spatial estimation of groundwater quality factors using geostatistical methods (case study: Golpayegan plain). Journal of Natural Environmental, Iranian Journal of Natural Resources, 4(63): 347-357 (In Persian).
11. Haykin, S.S. 1999. Neural Networks: A Comprehensive Foundation, Prentice Hall International.
12. Jang, C.S., S.K. Chen and Y.M. Kuo. 2011. Establishing an irrigation management plan of sustainable groundwater based on spatial variability of water quality and quantity. Journal of Hydrology, 414-415: 201-210. [DOI:10.1016/j.jhydrol.2011.10.032]
13. Iranian Ministry of Energy. 2018. Report on the groundwater production and balancing plan in Iran, Regional Water Company of Markazi, (In Persian).
14. Jang, J.S.R. 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics, 23: 665-685. [DOI:10.1109/21.256541]
15. Khaledian, M.R., S.A. Moussavi, H. Asadi, M. Norouzi and M. Aligoli. 2015. Mapping of Soil Saturated Hydraulic Conductivity in Navroud-Assalem Watershed in Guilan Province. Journal of Water and Soil, 29(4): 787-796 (In Persian).
16. Khashei-Siuki, A., B. Ghahraman and M. Kouchakzadeh. 2013. Comparison of ANN, ANFIS and Regression Models to Estimate Groundwater level of Neyshaboor Aquifer. Iranian Journal of Irrigation and Drainage, 1(7): 10-22 (In Persian).
17. Kisi, O. 2007. Streamflow forecasting using different artificial neural network algorithms. J. Hydrologic Engineering, 12(5): 532-539. [DOI:10.1061/(ASCE)1084-0699(2007)12:5(532)]
18. Kisi, O., H. Sanikhani, M. Zounemat-Kermani and F. Niazi. 2015. Long-term monthly evapotranspiration modeling by several data-driven methods without climatic data. Computers and Electronics in Agriculture, 115: 66-77. [DOI:10.1016/j.compag.2015.04.015]
19. Koohi Cheleh Karan, N., R. Asadi and P. Lajmiri. 2009. Estimation of geostatistical methods for estimation of groundwater salinity parameter (Case study: Darab Plain). National Conference on Water Critical Management. Islamic Azad University, Marvdasht Branch, 9 pp (In Persian).
20. Lohani, A.K. and G. Krishan. 2015. Groundwater Level Simulation Using Artificial Neural Network in Southeast, Punjab, India. Journal of Geology & Geophysics, 4: 206-211.
21. Maroufpoor, S., M. Jalali, S. Nikmehr, N. Shiri, J. Shiri and E. Maroufpour. 2020. Modeling groundwater quality by using hybrid intelligent and geostatistical methods. Environmental Science and Pollution Research, https://doi.org/10.1007/s11356-020-09188-z [DOI:10.1007/s11356-020-09188-z.]
22. Matkan, A., B. Arabi, H. Lashkari and B. Mirbagheri. 2012. Estimation of Precipitation Changes Using Integrated Artificial Neural Networks Technique and Geostatistics in Northwest of Iran, Iranian Remote Sensing and GIS, 4(4): 37-54.
23. Moradi, M., H. Hassan Vagharfard, A. Asadollah Khourani and V. Mahmudinezhad. 2011. Evaluation of different interpolation methods in zoning of groundwater salinity using Cross-Validation (Case study: Shahrekord plain). Journal of Remote Sensing and GIS, 3(1): 35-44 (In Persian).
24. Nadiri, A., A. Asghari Moghaddam, H. Abghari and E. Fijani. 2013. Development of Artificial Intelligence Committee Machine for Transmissivity Estimation, Case study: Tasuj Plain. Iran-Water Resources Research, 3(1): 1-14 (In Persian).
25. Najafi, H., K.A. Woodbury. 2015. Online heat flux estimation using artificial neural network as a digital filter approach, Int. J. Heat Mass Transfer, 91: 808-817. [DOI:10.1016/j.ijheatmasstransfer.2015.08.010]
26. Nikbakht, S. and M. Delbari. 2014. Estimation of groundwater levels using geostatistical methods. Journal of Water and Sustainable Development, 1(1): 49-56 (In Persian).
27. Ostovari, Y., H. Beigi Harchegani and A.R. Davoodian. 2011. Assessment Spatial Variability and Mapping of Some Water Quality Parameters for Use in Drip Irrigation Design in Lordegan Plain, Iran. Iranian Journal of irrigation and drainage, 2(5): 242-253 (In Persian).
28. Saadipoor, Ch., M. Roodpeyma, A. Karami, N. Davatgar and S.M. Salahedin. 2017. Evaluation of spatial variation of soil saturated hydraulic conductivity using spatial statistic (Case study: Laghar plain). Journal of Water and Soil Conservation, 23(6): 375-382 (In Persian).
29. Safavi, M., O. Mohammadrezapour, E. Bahrami, M. Mohamadi sedigh and M. Salarijazi. 2018. Geostatisrical assessment of spatial and temporal variations of groundwater quality parameters in Qorveh and Dehgolan South plain. Irrigation and Water Engineering, 33: 167-183 (In Persian).
30. Shabani, M. 2011. Evaluation of geostatistical methods in the preparation of groundwater quality maps and their zoning (Case study: Neyriz plain, Fars province). Journal of Natural Geography, 4(13): 83-96 (In Persian).
31. Sheikh Goodarzi, M., S.H. Mousavi and N. Khorasani. 2012. Imulating Spatial Changes in Groundwater Qualitative Factors Using Geostatistical Methods (Case Study: Tehran - Karaj Plain). Journal of Natural Environment, Iranian Journal of Natural Resources, 65(1): 83-93 (In Persian).
32. Taormina, R., K.W. Chau and R. Sethi. 2012. Artificial Neural Network Simulation of Hourly Groundwater Levels in a Coastal Aquifer System of the Venice Lagoon, Engineering Applications of Artificial Intelligence, 8(25): 1670- 1676. [DOI:10.1016/j.engappai.2012.02.009]
33. Tapoglou, E., G.P. Karatzas, I.C. Trichakis and E.A. Varouchakis. 2014. Spatial temporal hybrid neural network-Kriging model for groundwater level simulation. Journal of Hydrology, 519 (Part D): 3193-3203. [DOI:10.1016/j.jhydrol.2014.10.040]
34. Wagh, V.M., D.B. Panaskar, A.A. Muley, S.V. Mukate, Y.P. Lolage and M.L. Aamalawar. 2016. Prediction of groundwater suitability for irrigation using artificial neural network model: a case study of Nanded tehsil, Maharashtra, India. Modeling Earth Systems and Environment, 2: 196-207. [DOI:10.1007/s40808-016-0250-3]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.