دوره 12، شماره 24 - ( پاییز و زمستان 1400 1400 )                   جلد 12 شماره 24 صفحات 132-120 | برگشت به فهرست نسخه ها


XML English Abstract Print


دانشگاه علوم کشاورزی و منابع طبیعی ساری
چکیده:   (2166 مشاهده)
چکیده مبسوط
مقدمه و هدف: در حوضه­های فاقد آمار هیدرومتری نمی­توان رفتار هیدرولوژیک را نسبتاً دقیق به دست آورد؛ اما با پرداختن به ویژگی­های ژئومرفیک می­توان بر این مشکل فائق آمده تا در آینده به کاهش خسارات ناشی از سیل پرداخت. در این تحقیق به‌منظور تعیین خطر سیلاب مناطق سیل گیر از دو عامل ژئومرفیک شامل شاخص رطوبت توپوگرافی و شاخص قدرت رودخانه استفاده شد.
مواد و روش­ ها: با توجه به نبود داده­های کافی در ارتباط با دبی رودخانه حوزه آبخیز وازرود اقدام به تعیین مشخصه­های خطر سیل تاریخی در این منطقه شد. در مرحله نخست از روش SCS به منظور شبیه­سازی دبی اوج استفاده شد. پس از  تعیین مشخصه های کمی خطر سیل (دبی اوج) در مرحله بعد اقدام به پیش­بینی خطر کیفی سیل شد. به‌منظور تعیین خطر کیفی سیل از تلفیق دو عامل قدرت رودخانه و سطح اراضی سیل گیر استفاده شد. اراضی سیل گیر با دوره بازگشت‌های مختلف با روش آستانه شاخص رطوبت توپوگرافی مشخص شد.
یافته­ ها: نتایج اجرای این روش نشان داد که با افزایش دوره بازگشت سیل، اراضی سیل گیر افزایش می‌یابد و میزان شاخص رطوبت توپوگرافی با افزایش دوره بازگشت سیل کاهش می‌باید. نتایج نقشه‌های خطر سیلاب با دوره بازگشت­های مختلف نشان داد که هرچه دوره بازگشت سیل بزرگ‌تر می­شود مناطق تحت تأثیر خطر سیل در طبقات خطر به‌طور کلی افزایش پیدا می­نماید. اراضی که در خطر سیل با دوره بازگشت­های 2، 10، 25، 50 و 100 ساله قرار خواهند گرفت به ترتیب 2/2، 3، 4/2 و 9/8% در کل حوضه می‌رسد. همچنین روستاهای واز تنگه، وازعلیا و نوجمه به ترتیب با 20/6، 16/4 و 13/1% اراضی تحت تأثیر سیل به عنوان آسیب‌پذیرترین مناطق روستایی در حوضه آبخیز وازرود تعیین شدند.
نتیجه ­گیری: پیش­بینی خطر سیل بستگی به ویژگی­های حوزه آبریز و عوامل هیدرولوژیک و ژئومرفیک منطقه دارد. به ­طوری که در حوزه­هایی که دارای آمار ناقص و کم می­باشند به عنوان یکی از ابزارهای مدیریت غیرسازه‌ای سیلاب و مکمل روش‌های سازه‌ای، نقش مهمی را در کنترل سیلاب و کاهش خسارات محتمل ایفا می‌کند.
 
متن کامل [PDF 2101 kb]   (594 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: بلايای طبيعی (سيل، خشکسالی و حرکت های توده ای)
دریافت: 1399/11/30 | ویرایش نهایی: 1400/12/3 | پذیرش: 1400/1/18 | انتشار: 1400/6/10

فهرست منابع
1. Abedini, M. and R. Fathi jukdan. 2016. Zoning the risk of flooding in the Gorganrood catchment using Arc GIS. Hydrogeomorphology, 7: 1-17 (In Persian).
2. Bazai, N.A., P. Cui, K.J. Zhou, S. Abdul, K.F. Cui, H. Wang, G.T. Zhang and D.Z. Liu. 2021. Application of the soil conservation service model in small and medium basins of the mountainous region of Heilongjiang, China. International Journal of Environmental Science and Technology, 1-16. [DOI:10.1007/s13762-021-03136-1]
3. Beven, K.J. and M.J. kirkby. 1979. A physically based, variable contributing area model of basin hydrology / UN modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant. Hydrol Sci Bull, 24: 43-69. [DOI:10.1080/02626667909491834]
4. De Almeida, I.K., A.K. Almeida, J.L. Steffen and T.A. Sobrinho. 2016. Model for estimating the time of concentration in watersheds. Water Resour Manag, 30: 4083-4096. [DOI:10.1007/s11269-016-1383-x]
5. De Risi, R., F. Jalayer and F. De Paola. 2015. Meso-scale hazard zoning of potentially flood prone areas. Journal of Hydrology, 527: 316-325. [DOI:10.1016/j.jhydrol.2015.04.070]
6. Doerfliger, N., P.Y. Jeannin and F. Zwahlen. 1999. Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environmental Geology journal, 39: 165-176. [DOI:10.1007/s002540050446]
7. Du, J.K., L. Qian, H. Rui, T. Zuo, D. Zheng, Y. Xu and C.Y. Xu .2012. Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China. Journal of Hydrology, (464 -465): 127-139. [DOI:10.1016/j.jhydrol.2012.06.057]
8. Gholami, SH., M. Habibnezhad roshan and M. Nooripoor. 2015. The effect of population growth on land use change (case study: Vaz catchment, Noor). Journal of Natural ecosystem of Iran, 6(1-2): 37-56 (In Persian).
9. Gurdak, J.J., J.E. McCray, G. Thyne and S.L. Qi. 2007. Latin hypercube approach to estimate uncertainty in ground water vulnerability. Ground Water, 45: 348-361. [DOI:10.1111/j.1745-6584.2006.00298.x]
10. Hadian amri, M.A. and M. Habibneghad roshan. 2011. Comparison of experimental methods for estimating maximum flood discharge in Vaz River basin of Mazandaran province. 7th National Conference on Watershed Management Science and Engineering, Iran, Esfahan. 7 pp (In Persian).
11. Loague, K., R.L. Bernknop, R.E. Green and T.W. Giambelluca. 1996. Uncertainty of groundwater vulnerability assessments for agricultural regions in Hawaii: Review. Journal of environmental quality, 25: 475-490. [DOI:10.2134/jeq1996.00472425002500030013x]
12. Moore, I.D., R.B. Grayson and A.R. Ladson. 1991. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Process, 5(1): 3-30. [DOI:10.1002/hyp.3360050103]
13. Motevalli, A. and M. Vafakhah. 2016. Flood hazard mapping using synthesis hydraulic and geomorphic properties at watershed scale. Stochastic Environmental Research and Risk Assessment, 30: 1889-1900. [DOI:10.1007/s00477-016-1305-8]
14. Müller, A., J. Reiter and U. Weiland. 2011. Assessment of urban vulnerability towards floods using an indicator-based approach-a case study for Santiago de Chile. Natural Hazardous Earth System Sciences, 11(8): 2107-2123. [DOI:10.5194/nhess-11-2107-2011]
15. Pelling, M. 1997. What determines vulnerability to floods; a case study in Georgetown, Guyana. Environ Urban, 9: 203-226. [DOI:10.1177/095624789700900116]
16. Rahmani, A. 2019. Flood damage is a short-term consequence of natural resource protection. Iran nature, 4(2): 73-87 (In Persian).
17. Rahmati, O., H.R. Pourghasemi and H. Zeinivand. 2016. Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto International, 31: 42-70. [DOI:10.1080/10106049.2015.1041559]
18. Sadeghi, H., S. Gharemahmudli, A. Khaledi Darvishan, H. Kheirfam, M. Kiani Harchegani and P. Saeidi. 2014. Effect of river sand and gravel mining on monthly changeability of suspended sediment concentration. Journal of Water and Soil Resources conservation, 3(3): 65-77 (In Persian).
19. Shirzadi, M. and N. Hashemzadeh inisofla. 2016. Flood prediction in Ahar Chay catchment using SCS and GIS artificial neural network (ANN). 2nd International Congress of Earth Sciences and Urban Development, Tabriz, Iran, 14 pp (In Persian).
20. Solaimani, K. and F. Shokrian. 2020. Suitable Site Selection of Fog Water Harvesting Based-On RS Data in Upstream of Vazrud Watershed in Iran. Jour a of Watershed Management Research, 11(21): 249-258 (In Persian).
21. Solaimani, K., F. Shokrian, R. Tamartash and M. Banihashemi. 2010. Efficiency of ETM+ Data Analysis to Determining of Suitable Vegetation Indices (Case Study: Vazrud Watershed). Iranian Journal of Remote Sensing & GIS, 4: 71-82 (In Persian).
22. Solaimani, K., J. Zandi and M. Habibnejad. 2014. Evaluating the Efficiency of Frequency Ratio, Bivariate (Wi) and (Wf) Methods of Landslide Susceptibility Mapping, A Case Study: Vazroud Watershed, Mazandaran Province, Iran. Geosciences Scientific Quarterly Journal, 24: 41-50 (In Persian).
23. Solaimani, K. 2002. Morphometric analysis of Vazrood basin. Final report of the research project. Mazandaran University (In Persian).
24. Solaimani, K. 2021. Investigation of historical floods in non-statistical basins using remote sensing techniques (Case study: Vazrood Basin). Final report. Sari University of Agriculture and Natural Resources (In Persian).
25. Tariq, M. 2013. Risk-based flood zoning employing expected annual damages: The Chenab River case study. Stochastic Environmental Research and Risk Assessment, 27: 1957-1966. [DOI:10.1007/s00477-013-0730-1]
26. Tehrany, M.S., B. Pradhan and M.N. Jebur. 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512: 332-343. [DOI:10.1016/j.jhydrol.2014.03.008]
27. Trigila, A., C. Iadanza, C. Esposito and G. Scarascia-Mugnozza. 2015. Comparison of Logistic regression and random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology, 249: 119-136. [DOI:10.1016/j.geomorph.2015.06.001]
28. Van Westen, C.J. 2013. Remote sensing and GIS for natural hazards assessment and disaster risk management. In: Shroder, J. (Editor in Chief), Bishop, M.P. (Ed.), Treatise on Geomorphology. Academic Press, San Diego, CA, Remote Sensing and GIS science in Geomorphology, 3: 259-298. [DOI:10.1016/B978-0-12-374739-6.00051-8]
29. Yousefzadeh, A., B. Zeinali, K. Khalil Valizadeh and S. Asghari Sar Eskanrood. 2019. The Extraction of Flood Potential of Simineh River Basin Applying Satellite Images, Topographic Wetness Index and Morphological Features. Geographical and Sustainability of environment, 9(32): 49-61(In Persian).
30. Zandi, J., M. Habibnejad and K. Solaimani. 2013. Soil erosion risk assessment and its relationship with some environmental parameters (Case study: Vazroud watershed, Mazandaran). Journal of Range and Watershed Management, 66(3): 401-415 (In Persian).

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.