1. Aissia, M. A. B., Chebana, F., & Ouarda, T. B. (2017). Multivariate missing data in hydrology-Review and applications. Advances in Water Resources, 110, 299-309. [
DOI:10.1016/j.advwatres.2017.10.002]
2. Alibakhshi, S. M., Farid Hossini, A., Davari, K., Alizadeh, A., & Munyka, H. (2019). Assessment of Ground Station, GPM Satellite and MERRA Precipitation Products in Kashafrud Basin. Watershed Management Research, 9(18), 111-122 (In Persian). [
DOI:10.29252/jwmr.9.18.111]
3. Arriagada, P., Dieppois, B., Sidibe, M., & Link, O. (2019). Impacts of Climate Change and Climate Variability on Hydropower Potential in Data-Scarce Regions Subjected to Multi-Decadal Variability. Energies, 12, 2747. [
DOI:10.3390/en12142747]
4. Bennett, D. A. (2001). How can I deal with missing data in my study? Australian and New Zealand journal of public health, 25(5), 464-469. [
DOI:10.1111/j.1467-842X.2001.tb00294.x]
5. Blum, A. G., Archfield, S. A., & Vogel, R. M. (2017). On the probability distribution of daily streamflow in the United States. Hydrology and Earth System Sciences, 21(6), 3093-3103. [
DOI:10.5194/hess-21-3093-2017]
6. Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. [
DOI:10.1023/A:1010933404324]
7. Damadi, S., Dehvari, A., Dahmardeh ghaleno, M. R., & Ebrahimiyan, M. (2021). Flood hazard zonation using HEC-RAS hydraulic model in Sarbaz River, Sistan and Baluchestan Province. Watershed Engineering and Management, 13(3), 590-601 (In Persian).
8. Dembélé, M., Oriani, F., Tumbulto, J., Mariéthoz, G., & Schaefli, B. (2019). Gap-filling of daily streamflow time series using Direct Sampling in various hydroclimatic settings. Journal of Hydrology, 569, 573-586. [
DOI:10.1016/j.jhydrol.2018.11.076]
9. Déry, S. J., Stahl, K., Moore, R. D., Whitfield, P. H., Menounos, B., & Burford, J. E. (2009). Detection of runoff timing changes in pluvial, nival, and glacial rivers of western Canada. Water Resources Research, 45(4). [
DOI:10.1029/2008WR006975]
10. Deshmukh, H., Papageorgiou, M., Kilpatrick, E. S., Atkin, S. L., & Sathyapalan, T. (2019). Development of a novel risk prediction and risk stratification score for polycystic ovary syndrome. Clinical Endocrinology, 90(1), 162-169. [
DOI:10.1111/cen.13879]
11. Di Zio, M., Guarnera, U., & Luzi, O. (2007). Imputation through finite Gaussian mixture models. Computational Statistics & Data Analysis, 51(11), 5305-5316. [
DOI:10.1016/j.csda.2006.10.002]
12. Dong, Y., & Peng, C. Y. J. (2013). Principled missing data methods for researchers. SpringerPlus, 2(1), 1-17. [
DOI:10.1186/2193-1801-2-222]
13. Elshorbagy, A. A., Panu, U. S., & Simonovic, S. P. (2000). Group-based estimation of missing hydrological data: I. Approach and general methodology. Hydrological sciences journal, 45(6), 849-866. [
DOI:10.1080/02626660009492388]
14. Grantham-McGregor, S., Cheung, Y. B., Cueto, S., Glewwe, P., Richter, L., & Strupp, B. (2007). Developmental potential in the first 5 years for children in developing countries. The lancet, 369(9555), 60-70. [
DOI:10.1016/S0140-6736(07)60032-4]
15. Gyau-Boakye, P., & Schultz, G. A. (1994). Filling gaps in runoff time series in West Africa. Hydrological sciences journal, 39(6), 621-636. [
DOI:10.1080/02626669409492784]
16. Hamzah, F. B., Mohd Hamzah, F., Mohd Razali, S. F., Jaafar, O., & Abdul Jamil, N. (2020). Imputation methods for recovering streamflow observation: A methodological review. Cogent Environmental Science, 6(1), 1745133. [
DOI:10.1080/23311843.2020.1745133]
17. Harvey, C. L., Dixon, H., & Hannaford, J. (2012). An appraisal of the performance of data-infilling methods for application to daily mean river flow records in the UK. Hydrology Research, 43(5), 618-636. [
DOI:10.2166/nh.2012.110]
18. Hawthorne, G., & Elliott, P. (2005). Imputing cross-sectional missing data: Comparison of common techniques. Australian & New Zealand Journal of Psychiatry, 39(7), 583-590. [
DOI:10.1080/j.1440-1614.2005.01630.x]
19. Heidari Chenari, F., Fazloula, R., & Nikzad Tehrani, E. (2022). Calibration and Evaluation of HEC-HMS Hydrological Model Parameters in Simulation of Single Rainfall-Runoff Events (Case Study: Tajan Watershed). Watershed Management Research, 13(26), 69-81 (In Persian). [
DOI:10.52547/jwmr.13.26.69]
20. Hong, S., & Lynn, H. S. (2020). Accuracy of random-forest-based imputation of missing data in the presence of non-normality, non-linearity, and interaction. BMC medical research methodology, 20(1), 1-12. [
DOI:10.1186/s12874-020-01080-1]
21. Huisman, M. (2009). Imputation of missing network data: Some simple procedures. Journal of Social Structure, 10(1), 1-29. [
DOI:10.1007/978-1-4614-7163-9_394-1]
22. Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., & Kolehmainen, M. (2004). Methods for imputation of missing values in air quality data sets. Atmospheric environment, 38(18), 2895-2907. [
DOI:10.1016/j.atmosenv.2004.02.026]
23. Kanani, R., Fakheri Fard, A., Ghorbani, M. A., & Dinpashoh, Y. (2020). Trend Analysis of the Streamflow in the Lighvan River hydrometric Stations (Upstream and Downstream). Watershed Management Research, 11(22), 11-19 (In Persian). [
DOI:10.52547/jwmr.11.22.11]
24. Kim, M., Baek, S., Ligaray, M., Pyo, J., Park, M., & Cho, K. H. (2015). Comparative studies of different imputation methods for recovering streamflow observation. Water, 7(12), 6847-6860. [
DOI:10.3390/w7126663]
25. Kling, H., Fuchs, M., & Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Hydrology, 424, 264-277. [
DOI:10.1016/j.jhydrol.2012.01.011]
26. Knoben, W. J., Freer, J. E., & Woods, R. A. (2019). Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrology and Earth System Sciences, 23(10), 4323-4331. [
DOI:10.5194/hess-23-4323-2019]
27. Koçak, E. Prediction of daily fine particulate matter (PM2. 5) concentration in Aksaray, Turkey: Temporal variation, meteorological dependence, and employing artificial neural network. Environmental Progress & Sustainable Energy, e14355.
28. Lakshminarayan, K., Harp, S. A., & Samad, T. (1999). Imputation of missing data in industrial databases. Applied intelligence, 11(3), 259-275. [
DOI:10.1023/A:1008334909089]
29. Liu, J., & Zhang, Y. (2017). Multi-temporal clustering of continental floods and associated atmospheric circulations. Journal of Hydrology, 555, 744-759. [
DOI:10.1016/j.jhydrol.2017.10.072]
30. Lopes, A. V., Chiang, J. C. H., Thompson, S. A., & Dracup, J. A. (2016). Trend and uncertainty in spatial‐temporal patterns of hydrological droughts in the Amazon basin. Geophysical Research Letters, 43(7), 3307-3316. [
DOI:10.1002/2016GL067738]
31. Mackay, S. J., Arthington, A. H., & James, C. S. (2014). Classification and comparison of natural and altered flow regimes to support an Australian trial of the Ecological Limits of Hydrologic Alteration framework. Ecohydrology, 7(6), 1485-1507. [
DOI:10.1002/eco.1473]
32. Marino, S., Zhou, N., Zhao, Y., Wang, L., Wu, Q., & Dinov, I. D. (2019). HDDA: DataSifter: statistical obfuscation of electronic health records and other sensitive datasets. Journal of statistical computation and simulation, 89(2), 249-271. [
DOI:10.1080/00949655.2018.1545228]
33. McGregor, G. R. (2019). Climate and rivers. River Research and Applications, 35(8), 1119-1140. [
DOI:10.1002/rra.3508]
34. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900. [
DOI:10.13031/2013.23153]
35. Muñoz, P., Orellana-Alvear, J., Willems, P., & Célleri, R. (2018). Flash-flood forecasting in an Andean Mountain catchment-development of a step-wise methodology based on the random forest algorithm. Water, 10(11), 1519. [
DOI:10.3390/w10111519]
36. Nadi, M., Baziarpour, H., & Raeini sarjaz, M. (2022). Evaluation and modification of Aphrodite precipitation network in estimating monthly and annual precipitation in central parts of Iran. Watershed Management Research, 13(25), 97-104 (In Persian). [
DOI:10.52547/jwmr.13.25.97]
37. Norazian, M. N., Shukri, Y. A., Azam, R. N., & Al Bakri, A. M. M. (2008). Estimation of missing values in air pollution data using single imputation techniques. Science Asia, 34(3), 341-345. [
DOI:10.2306/scienceasia1513-1874.2008.34.341]
38. Petrone, K. C., Hughes, J. D., Van Niel, T. G., & Silberstein, R. P. (2010). Streamflow decline in southwestern Australia, 1950-2008. Geophysical Research Letters, 37(11). [
DOI:10.1029/2010GL043102]
39. Plaia, A., & Bondi, A. L. (2006). Single imputation method of missing values in environmental pollution data sets. Atmospheric Environment, 40(38), 7316-7330. [
DOI:10.1016/j.atmosenv.2006.06.040]
40. Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., ... & Stromberg, J. C. (1997). The natural flow regime. BioScience, 47(11), 769-784. [
DOI:10.2307/1313099]
41. Sartori, N., Salvan, A., & Thomaseth, K. (2005). Multiple imputation of missing values in a cancer mortality analysis with estimated exposure dose. Computational statistics & data analysis, 49(3), 937-953. [
DOI:10.1016/j.csda.2004.06.013]
42. Schafer, J.L. (1997) The Analysis of Incomplete Multivariate Data. Chapman & Hall, London. [
DOI:10.1201/9781439821862]
43. Sidibe, M., Dieppois, B., Mahé, G., Paturel, J. E., Amoussou, E., Anifowose, B., & Lawler, D. (2018). Trend and variability in a new, reconstructed streamflow dataset for West and Central Africa, and climatic interactions, 1950-2005. Journal of hydrology, 561, 478-493. [
DOI:10.1016/j.jhydrol.2018.04.024]
44. Starrett, S.K., Heier, T., Su, Y., Bandurraga, M., Tuan, D., & Starrett, S. (2010). An example of the impact that filled-in peakflow data can have on flood frequency analysis, in: Challenges of Change - Proceedings of the World Environmental and Water Resources Congress 2010, 2451-2455. [
DOI:10.1061/41114(371)252]
45. Stekhoven, D. J., & Bühlmann, P. (2012). MissForest-non-parametric missing value imputation for mixed-type data. Bioinformatics, 28(1), 112-118. [
DOI:10.1093/bioinformatics/btr597]
46. Tang, F., & Ishwaran, H. (2017). Random forest missing data algorithms. Statistical Analysis and Data Mining: The ASA Data Science Journal, 10(6), 363-377. [
DOI:10.1002/sam.11348]
47. Tao, N., Chen, Y., Wu, Y., Wang, X., Li, L., & Zhu, A. (2019). The terpene limonene induced the green mold of citrus fruit through regulation of reactive oxygen species (ROS) homeostasis in Penicillium digitatum spores. Food chemistry, 277, 414-422. [
DOI:10.1016/j.foodchem.2018.10.142]
48. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., ... & Altman, R. B. (2001). Missing value estimation methods for DNA microarrays. Bioinformatics, 17(6), 520-525. [
DOI:10.1093/bioinformatics/17.6.520]
49. Tyralis, H., Papacharalampous, G., & Langousis, A. (2019). A brief review of random forests for water scientists and practitioners and their recent history in water resources. Water, 11(5), 910. [
DOI:10.3390/w11050910]
50. Ukkola, A. M., Keenan, T. F., Kelley, D. I., & Prentice, D. I. (2016). Vegetation plays an important role in mediating future water resources. Environmental Research Letters, 11(9), 094022. [
DOI:10.1088/1748-9326/11/9/094022]
51. Van Buuren, S. (2007). Multiple imputation of discrete and continuous data by fully conditional specification. Statistical methods in medical research, 16(3), 219-242. [
DOI:10.1177/0962280206074463]
52. Vega-Garcia, C., Decuyper, M., & Alcázar, J. (2019). Applying cascade-correlation neural networks to in-fill gaps in Mediterranean daily flow data series. Water, 11(8), 1691. [
DOI:10.3390/w11081691]
53. Waljee, A. K., Mukherjee, A., Singal, A. G., Zhang, Y., Warren, J., Balis, U., Marrero, J., Zhu, J., & Higgins, P. D. (2013). Comparison of imputation methods for missing laboratory data in medicine. BMJ open, 3(8), e002847. [
DOI:10.1136/bmjopen-2013-002847]
54. Widaman, K. F. (2006). Best practices in quantitative methods for developmentalists: III. Missing data: What to do with or without them. Monographs of the Society for Research in Child Development, 7(1), 210-211.
55. Williams, L. S., Khosravi, B., Velimirovic, M., Khouri, J., Raza, S., Mazzoni, S., ... & Anwer, F. (2023). An Ensemble Machine Learning Model Using Gradient Boosting Identifies Patients with Disease Progression in Newly Diagnosed Multiple Myeloma. Blood, 142, 1990.0. [
DOI:10.1182/blood-2023-188762]
56. Zhang, Y., & Post, D. (2018). How good are hydrological models for gap-filling streamflow data? Hydrology and Earth System Sciences, 22(8), 4593-4604. [
DOI:10.5194/hess-22-4593-2018]