سیل یکی از پدیدههای ویرانگر طبیعی است که پیشبینی آن از اهمیت بالایی برخوردار است .فرآیند بارش- رواناب و ایجاد سیلاب پدیدههای فیزیکی هستند که بررسی آنها به سبب تاثیرپذیری از پارامترهای مختلف، دشوار میباشد. تاکنون روشهای مختلفی برای تحلیل این پدیدهها ارایه شده است. پژوهش حاضر با هدف بررسی کارآمدی شبکههای عصبی مصنوعی در شبیهسازی فرآیند بارش- رواناب با دخالت دادن ارتفاع آب معادل برف در حوزه آبخیز لتیان واقع در استان تهران صورت گرفته است. بدین منظور 92 تصویر سنجنده مودیس در طی سه سال آبی 83-1382 تا 85-1384 از سایت ناسا دریافت گردید و سطح پوشش برف در هر یک از تصاویر استخراج و میزان ارتفاع آب معادل برف در طی سالهای مورد نظر محاسبه شد. همچنین دادههای ارتفاع بارندگی، درجه حرارت و دبی در سالهای مورد نظر در دسترس بوده که از شبکههای پرسپترون چندلایه و الگوریتم پس انتشار خطا برای یافتن ساختار شبکه استفاده شد. نتایج نشان داد شبکه عصبی با ساختار 1-10-4 با 4 نرون در لایه ورودی، 10 نرون در لایه میانی و 1 نرون در لایه خروجی با ضریب کارایی 85/0 و ضریب تبیین 68/0 و ریشه میانگین مربعات خطا 04/0 به عنوان بهترین ساختار از دقت مناسبی در برآورد رواناب برخوردار بود و دخالت دادن آب معادل برف باعث افزایش دقت مدل شد.
بازنشر اطلاعات | |
این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است. |