دوره 9، شماره 17 - ( بهار و تابستان 1397 )                   جلد 9 شماره 17 صفحات 66-57 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

akhoni pourhosseini F, darbandi S. (2018). Sofichay River Runoff Modeling using Support Vector Machine and Artificial Neural Network. J Watershed Manage Res. 9(17), 57-66. doi:10.29252/jwmr.9.17.57
URL: http://jwmr.sanru.ac.ir/article-1-610-fa.html
آخونی پورحسینی فاطمه، دربندی صابره. مدل سازی رواناب رودخانه صوفی چای با استفاده از ماشین بردار پشتیبان و شبکه عصبی مصنوعی پ‍‍ژوهشنامه مديريت حوزه آبخيز 1397; 9 (17) :66-57 10.29252/jwmr.9.17.57

URL: http://jwmr.sanru.ac.ir/article-1-610-fa.html


چکیده:   (3303 مشاهده)

    شبیه­ سازی دقیق فرآیند رواناب می­تواند نقش بسزایی در مدیریت منابع آب و مسائل مربوطه داشته باشد. پیچیدگی ذاتی این فرآیند استفاده از مدل­های فیزیکی و عددی را مشکل می­نماید. در سال­های اخیر کاربرد مدل­های هوشمند به­عنوان ابزاری توانمند در علم هیدرولوژی افزایش‌یافته است. هدف این مطالعه کاربرد آزمون گاما برای انتخاب ترکیب بهینه متغیرهای ورودی در مدل‌سازی رودخانه صوفی چای می‌باشد. مدل‌سازی جریان آب رودخانه با استفاده از تعداد نقاط بهینه متغیرهای منتخب با روش‌های شبکه عصبی مصنوعی و ماشین بردار پشتیبان می‌باشد. نتایج آزمون گاما نشان داد که رواناب رودخانه با شش تأخیر زمانی، نتایج بهتری به‌منظور پیش‌بینی ارائه می‌دهد. شبیه‌سازی رواناب با استفاده از دو مدل  ماشین بردار پشتیبان و شبکه عصبی مصنوعی نشان داد که بهترین ساختار ورودی برای پیش‌بینی رواناب ماه بعد، تا شش تأخیر خواهد بود. از میان دو مدل با ساختار ورودی یکسان، مدل ماشین بردار پشتیبان کارایی نسبتاً بالایی نسبت به شبکه عصبی مصنوعی داشته است.
 

متن کامل [PDF 4525 kb]   (1102 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1395/2/2 | پذیرش: 1395/6/14

فهرست منابع
1. Botsis, D., P. Latinopoulos and k. Diamantaras. 2011. Rainfall-Runoff Moeling Using Suport Vector Regression and Artificial Neural Networks. CEST 2011-Rhodes, Greece.
2. Coulibaly, P., F. Anetil and B. BoBee. 2000. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. Journal of Hydrology, 230: 244-257. [DOI:10.1016/S0022-1694(00)00214-6]
3. Cristianini, N. and J. Shawe-Taylor. 2000. An Introduction to Support Vector Machines, Cambridge University Press, New York.
4. Choubey, V., S. Mishra and S.K. Pandy. 2014. Time Series Data Mining in Real Time Surface Runoff Forecasting through Support Vector Machine. International Journal of Computer Applications, 98(3): 23-30. [DOI:10.5120/17163-7223]
5. Dawson, C.W., R.J. Abrahart, A.Y. Shamseldin and R.L. Wibly. 2006. Flood estimation at ungauged sites using artifitial neural networks. Journal of Hydrology, 319: 391-409. [DOI:10.1016/j.jhydrol.2005.07.032]
6. Dibike, Y.B., S. Velickov, D.P. Solomatine and M.B. Abbott. 2001. Model Induction with Support Vector Machines: Introduction and Application, ASCE. Journal of Computing in Civil Engineering, 15(3): 208-216. [DOI:10.1061/(ASCE)0887-3801(2001)15:3(208)]
7. Farajzadeh, J., A. Fakheri Fard and S. Lotfi. 2014. Modeling of monthly rainfall and runoff of Urmia lake basin using feed-forward neural network and time series analysis model. Water Resources and Industry, 7(8): 38-48 (In Persian). [DOI:10.1016/j.wri.2014.10.003]
8. Jones, A.J. 2004. New tools in non-linear modeling and prediction. Computational Management Science 1: 109-149. [DOI:10.1007/s10287-003-0006-1]
9. Kisi, O. and C. Mesut. 2011. A wavelet-support vector machine conjunction model for monthly stream flow forecasting. Journal of Hydrology, 399: 132-140. [DOI:10.1016/j.jhydrol.2010.12.041]
10. Lafadani, E., A. Moghadamnia, A. Ahmadi, M. Jajarmizadeh and M. Ghafari Gosheh. 2013. Stream flow simulation using SVM, ANFIS and NAM models (A Case study). Caspian Journal of Applied Sciences Reaserch, 2(4): 86-93 (In Persian).
11. Lafadani, E., A. Moghadamnia, A. Ahmadi and H. Ebrahimi. 2014. Evaluate the effect of processing the input variables to the model of support vector machine to predict the volume of sediment gamma test. Iranian Journal of Natural Resources, 67(2): 289-303 (In Persian).
12. Noori, R., A. Karbassi and M. Sabahi. 2009. Evaluation of PCA and gamma test techniques on ANN operation for weekly solid waste prediction. Journal of Environmental Management, 91: 767-771 (In Persian). [DOI:10.1016/j.jenvman.2009.10.007]
13. Remesan, R., M.A. Shamim and D. Han. 2008. Model data selection using gamma test for daily solar radiation estimation Hydrological Processes, 22: 4301-4309. [DOI:10.1002/hyp.7044]
14. Remesan, R., M.A. Shami, D. Han and J. Mathew. 2009. Runoff prediction using an integrated hybrid modeling scheme. Journal of Hydrology, 372: 48-60. [DOI:10.1016/j.jhydrol.2009.03.034]
15. Rezaee, E., A. Shahidi, A. Khashee and H. Riyahi Madvar. 2014. Application of Least Squares Support Vector Machine Model for Water Table Simulation (Case Study: Ramhormoz plain). Iranian Journal of lrrigation and Drainage, 4: 510-520 (In Persian).
16. Roozbahani, A., B. Zahraie and M. Tabesh. 2012. Risk Analysis of Drinking water system by aggregation of Fuzzy Fault Tree Analysis with Bayesian networks and Dempster-shafer theory ,10th International Conference on Hydro informatics ,Humborg ,Germany.
17. Sharifi, A., Y. Dinpashoh, A. Fakheri-Fard and A. Moghaddamniya. 2013. Optimum Combination of Variables for Runoff Simulation in Amameh Watershed using Gamma test. Journal of Water and Soil, 23(4): 59-72 (In Persian).
18. Seifi, A. and H. Riahi-Madvar. 2012. Input Variable Selection in expert systems based on hybrid Gamma Test-Least Square Support Vector Machine, ANFIS and ANN models. Provisional chapter. INTECH.
19. Seifi, A. 2010. Developing an Expert System for Predicting Daily Reference Evapotranspiration Using Support Vector Machines (SVM) in Comparison with ANFIS, ANN and Empirical Methods. M. S. in Irrigation and drainage Engineering, Tarbiat Modares University, Tehran.
20. Taheri, H. and M. Ghafouri. 2012. Comparison between active learning method and support vector machine for runoff modeling. Journal hydraulic Hydromech, 1: 16-32 (In Persian). [DOI:10.2478/v10098-012-0002-7]
21. Yoon, H. and S.C. Jun. 2011. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastalaquifer. Journal of Hydrology, 396: 128-138. [DOI:10.1016/j.jhydrol.2010.11.002]
22. Yu, P.S., S.T. Chen and I.F. Chang. 2005. Flood stage forecasting using support vector machines. Geophysical Research Abstracts, 7: 41-76.
23. Yu, P.S., S.T. Chen and I.F. Chang. 2006. Support vector regression for real-time flood stage forecasting. Journal of Hydrology, 328: 704-716. [DOI:10.1016/j.jhydrol.2006.01.021]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb