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Figure 1. Geographical location of the Shahrekord Plain
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Table 2. Results of parameters of MLP and SVR models in observational well No. 1
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Table 3. Results of evaluation of MLR, MLP and SVR models in observational well No. 1
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Figure 7. Observed and predicted values of the best combination in observational well No. 1 using MLP model
during 2009 and 2010: (a) Scatter plot, (b) Groundwater level plot
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Table 4. Percentage of superiority of MLR, MLP and1 SVR models in 18 observational wells used in this research
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Abstract

Accurate and reliable simulation and prediction of the groundwater level variation is
significant and essential in water resources management of a basin. Models such as ANNs and
Support Vector Regression (SVR) have proved to be effective in modeling nonlinear function
with a greater degree of accuracy. In this respect, an attempt is made to predict monthly
groundwater level fluctuations using Multivariate Linear Regression, Multi-Layer Perceptron
neural network modds and two SVRs with RBF and linear function. In the present study,
monthly data (from 2000 to 2010) of 18 observational wells in Shahrekord Plain were used for
simulating and predicting the groundwater level. Regarding to NS efficiency and RM SE criteria,
MLP mode in 56% and SVR in 44%, have the best performance in comparison with other
models. For an instance, in well No. 1, SVR-RBF using input parameters of groundwater level,
temperature, evaporation and precipitation is superior to other models. General efficiency of
MLP, SVR-RBF, and SVR-Linear for NS criteria is 0.703, 0.656 and 0.655, respectively; and
for RMSE criteriais 0.857, 0.905 and 0.914 meter, respectively. Results indicate that MLP and
SVR models give better accuracy in predicting groundwater levels in the study area when
compared to the linear model.

Keywords: Groundwater level prediction, Multivariate regression, Perceptron neural network,
Shahrekord Plain, Support Vector Regression
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