دوره 8، شماره 15 - ( بهار و تابستان 1396 )                   جلد 8 شماره 15 صفحات 250-258 | برگشت به فهرست نسخه ها


XML English Abstract Print


چکیده:   (2136 مشاهده)
پیش­بینی دبی اوج سیلاب و حجم رواناب یکی از چالش­های مهم در مدیریت حوزه­های آبخیز می­باشد. پژوهش حاضر با هدف تخمین دبی اوج سیلاب و حجم رواناب به کمک شبکه عصبی مصنوعی و شبکه عصبی-فازی تطبیقی در حوزه آبخیز کسیلیان صورت گرفته است. بدین منظور 15 ویژگی بارندگی برای 60 رگبار از سال 1354 تا 1388 مدنظر قرار گرفت. شاخص­های آماری میانگین مربعات خطا (RMSE)، ضریب کارایی (CE) و ضریب تبیین (R2) برای ارزیابی کارآیی مدل­ها استفاده شدند. نتایج نشان داد که متغیر دبی اوج سیلاب روش شبکه عصبی- فازی تطبیقی با ضریب تبیین 95/0، مجموع میانگین مربعات خطای 22/1 و ضریب کارایی 85 درصد نسبت به شبکه عصبی مصنوعی با ضریب تبیین 86/0، مجموع میانگین مربعات خطای 28/1 و ضریب کارایی 82 درصد عملکرد بهتری داشته است. در متغیر حجم رواناب نیز شبکه عصبی فازی- تطبیقی با ضریب تبیین 99/0، مجموع میانگین مربعات خطای 54/2369 و ضریب کارآیی 99 درصد نسبت به شبکه عصبی مصنوعی ضریب تبیین 98/0، مجموع میانگین مربعات خطای 82/10282 و ضریب کارایی 98 درصد عملکرد بهتری ارئه نمود. با توجه به نتایج آنالیز حساسیت بارش مازاد حساس­ترین عامل در تخمین دبی اوج و حجم رواناب شناخته شد.
متن کامل [PDF 589 kb]   (593 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1396/6/28 | پذیرش: 1396/6/28 | انتشار: 1396/6/28

فهرست منابع
1. Abghari, H. 2008. Intelligent prediction methods based on wavelet and neural network models between monthly river discharges, Ph.D. thesis, Natural Resources Faculty, University of Tehran, 173 pp (In Persian).
2. Bihamta, M.R. and M.A. Zare Chahouki. 2008. Principles of statistics for the natural resources science, 1rd Edition, University of Tehran Press, 300 pp (In Persian).
3. Bist, D. and A. Jangid. 2011. Discharge modeling using adaptive neuro-fuzzy inference system, International Journal of Advanced Science and Technology, 31: 99-114.
4. Dastoorani, M., H. Sharifi Darani, A. Talebi and A. Moghdamnia. 2011. Performance of artificial neural networks and adaptive neuro-fuzzy inference systemin rainfall-runoff modeling in the Zayandeh River dam watershed, Iranian Journal of Water and Wastewater, 4: 114-125 (In Persian).
5. Dehghani, N., M. Vafakhah and A. Bahremand. 2016. Rainfall-Runoff Modeling using Artificial Neural Network and Neuro-Fuzzy Inference System in Kasilian Watershed, Journal of Watershed Management Research, 7: 128-137 (In Persian).
6. Dorum, A., A. Yarar, M. Faik Sevimli and M. Onüçyildiz. 2010. Modelling the rainfall–runoff data of Susurluk basin, Expert Systems with Applications, 37: 6587-6593. [DOI:10.1016/j.eswa.2010.02.127]
7. El-Shafie, A., O. Jaafer and A. Seyed. 2011. Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia, International Journal of the Physical Sciences, 6: 2875-2888.
8. Firat, M. and M.E. Turan. 2009. Monthly river flow forecasting by an adaptive neuro-fuzzy inference system, Water and Environment Journal, 24: 116-125. [DOI:10.1111/j.1747-6593.2008.00162.x]
9. Jang J.R. 1993. ANFIS: Adaptive-network-based fuzzy inference system, IEEE Transactions on systems, Man, and Cybernetics, 23: 665-685. [DOI:10.1109/21.256541]
10. Kavoosi S.M. 2011. Determine the influence of soil parameters using artificial neural network and adaptive neuro-fuzzy inference system, M.Sc. Thesis, Watershed Management Department, Tarbiat Modarres University, 123 pp (In Persian).
11. Khaleghi, M.R., V. Gholami, J. Ghodusi and H. Hosseini. 2011. Efficiency of the geomorphologic instantaneous unit hydrograph method in flood hydrograph simulation, Catena, 87: 163-171. [DOI:10.1016/j.catena.2011.04.005]
12. Kisi, O., J. Shiri and M. Tombul. 2012. Modeling rainfall-runoff process using softcomputing techniques, Computers and Geosciences, 57: 108-117.
13. MirAbasi NajafAbadi, R., Y. DinPajooh and A. Fakheri Fard. 2011. Rainfall-runoff modeling using the maximum entropy principle (case study: Kasilian Basin), Journal of Science and Technology of Agriculture and Natural Resources, 15: 39-51 (In Persian).
14. Moosavi, V., M. Vafakhah, B. Shirmohammadi and N. Behnia. 2013. A Wavelet-ANFIS Hybrid Model for Groundwater Level Forecasting for Different Prediction Periods, Water Resources Management, 27: 1-21. [DOI:10.1007/s11269-012-0239-2]
15. Mukerji, A., C. Chatterjee and N.S. Raghuwanshi. 2009. Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models, Journal of Hydrologic Engineering, 14: 647-652. [DOI:10.1061/(ASCE)HE.1943-5584.0000040]
16. Nasiri, A. and M. Yamani. 2009. Geomorphological analysis and artificial neural network sin estimating direct runoff (Jajrud basin, sub-basin Amameh), Journal of Geography Research, 68: 33-44 (In Persian).
17. Pahlevani, H., E. Baheremand, A.A., Dehghani and A. Saaddin. 2010. Performance evaluation of artificial neural network models to estimate flood hydrograph in Jafarabad Gorgan River, Journal of Soil and Water Conservation Research, 18: 231-240 (In Persian).
18. Riad, S., J. Mania, L. Bouchaou and Y. Najjar. 2004. Predicting catchment flow in asemi-arid region via an artificial neural network technique, Hydrological Processes,18: 2387-2393. [DOI:10.1002/hyp.1469]
19. Sadeghi, S.H.R., M. Mozayyan and H.M. Moradi. 2007. Development of Hydrograph using Different Rainfall Components in Kasilian Watershed, Journal of Iranian Natural Resources, 60: 33-43 (In Persian).
20. Salajegheh, A., A. Fathabadi and M. Mahdavi. 2008. Performance of fuzzy neural techniques and statistical model sin simulating the rainfall-runoff, Journal of Iranian Natural Resources, 62: 65-79.
21. Seyyed Kaboli, H. and A.M. Akhond-Ali. 2009. Evaluation of loss methods to simulate flood events (Case study: Kasilian Basin), Water and Soil Journal, 32: 98-109 (In Persian).
22. Shirmohammadi, B., M. Vafakhah, V. Moosavi and A. Moghaddamnia. 2013. Application of several data-driven techniques for predicting groundwater level, Water Resources Management, 27: 419-432. [DOI:10.1007/s11269-012-0194-y]
23. Tali-Khoshk, S., M. Mohseni Saravi, M. Vafakhah and S. Khalighi-Sigaroudi. 2014. River Daily Flow Prediction using Neuro-Fuzzy Model (Case Study: Taleghan Watershed), Journal of Watershed Management Research, 5: 48-59 (In Persian).
24. Tayfur, G. and V.P. Singh. 2006. ANN and Fuzzy Logic Models for Simulating Event-Based Rainfall-Runoff, Journal of Hydraulic Engineering, 132: 1321-1330. [DOI:10.1061/(ASCE)0733-9429(2006)132:12(1321)]
25. Vafakhah, M. 2012. Application of artificial neural networks and adaptive neuro-fuzzy inference system models to short-term streamflow forecasting, Canadian Journal of Civil Engineering, 39: 402-414. [DOI:10.1139/l2012-011]
26. Vafakhah, M. 1999. Understanding the factors contributing to flood control in the basin using factor analysis in Qarechay River, Journal of Research and Development, 45: 72-75 (In Persian).
27. Wang, W.C., K.W. Chau, Ch.T. Cheng and L. Qiu. 2009. A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series, Journal of Hydrology, 374: 323-331. [DOI:10.1016/j.jhydrol.2009.06.019]