دوره 11، شماره 22 - ( پاییز و زمستان 1399 )                   جلد 11 شماره 22 صفحات 253-243 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadamini H, Khaledi darvishan A, Alavi J. (2020). Effects of Soil Surface Rock Fragments on Runoff Variables of Field Plots under Rainfall Simulation. jwmr. 11(22), 243-253. doi:10.52547/jwmr.11.22.243
URL: http://jwmr.sanru.ac.ir/article-1-942-fa.html
محمدامینی هیرو، خالدی درویشان عبدالواحد، علوی جلیل. اثر پوشش سنگ و سنگ‎ریزه سطحی خاک بر متغیرهای رواناب در کرت‌های صحرایی تحت شبیه‌سازی باران پ‍‍ژوهشنامه مديريت حوزه آبخيز 1399; 11 (22) :253-243 10.52547/jwmr.11.22.243

URL: http://jwmr.sanru.ac.ir/article-1-942-fa.html


گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور، ایران
چکیده:   (2001 مشاهده)
    سنگ و سنگ‌ریزه سطحی خاک بهعنوان عاملی مهم در رواناب و فرسایش قلمداد میشود. با وجود این، پژوهش‌های محدودی در خصوص بررسی کمّی اثر سنگ و سنگ‌ریزه سطحی خاک بر مؤلفه‌های رواناب به‌عنوان یکی از اجزای جدایی‌ناپذیر فرآیند فرسایش و بهویژه در شرایط طبیعی خاک انجام شده است. لذا پژوهش حاضر درصدد بررسی اثر درصد پوشش سنگ و سنگ‌ریزه سطحی بر مؤلفه‌های رواناب در کرت طبیعی و تحت شبیه‌سازی باران در خاک با بافت رسی-لومی و عمق عموماً کم‌تر از یک متر و با شیب طبیعی 20 درصد بوده است. مقادیر مؤلفه‌های رواناب شامل زمان شروع، حجم، ضریب و زمان خاتمه رواناب در کرت‌های صحرایی 1×1 متر مربع با 6 سطح پوشش سنگ و سنگ‌ریزه سطحی (2±2، 2±10، 2±18، 2±26، 2±34 و 2±42 درصد پوشش سطح خاک) و هر کدام با 3 تکرار تحت بارندگی با شدت ثابت 40 میلی‌متر بر ساعت اندازه‌گیری شد. نتایج نشان داد که افزایش پوشش قطعات سنگی سطحی تا حد مشخصی (حدود 34 درصد) باعث افزایش نفوذ، تاخیر در تشکیل رواناب سطحی، کاهش حجم و ضریب رواناب و تسریع در زمان خاتمه رواناب شده‌است. روند تغییرات مؤلفه‌های رواناب در دامنه پوشش قطعات سنگی سطحی خاک از حدود 34 تا 42 درصد معکوس شده است.
متن کامل [PDF 1327 kb]   (558 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: فرسايش خاک و توليد رسوب
دریافت: 1397/3/7 | ویرایش نهایی: 1399/12/13 | پذیرش: 1399/3/21 | انتشار: 1399/12/13

فهرست منابع
1. Abrahams, A.D. and A.J. Parsons. 1991. Relation between infiltration and stone cover on a semiarid hillslope, southern Arizona. Journal of Hydrology, 122: 49-59. [DOI:10.1016/0022-1694(91)90171-D]
2. Abrahams, A.D., P. Gao and F.A. Aebly. 2000. Relation of sediment transport capacity to stone cover and size in rain-impacted interrill flow. Earth Surface Processes and Landforms, 25: 497-504. https://doi.org/10.1002/(SICI)1096-9837(200005)25:5<497::AID-ESP77>3.0.CO;2-P [DOI:10.1002/(SICI)1096-9837(200005)25:53.0.CO;2-P]
3. Bashari, M., H.R. Moradi, M.M. Kheirkhah and M. Jafari Khaledi. 2013. Simulation of the effect of soil surface rock fragments on runoff and sediment yield. Watershed Engineering and Management, 5(2): 104-114 (In Persian).
4. Bunte, K. and J. Poesen. 1994. Effects of rock fragment size and cover on overland flow hydraulics, local turbulence and sediment yield on an erodible soil surface. Earth Surface Processes and Landforms, 19: 115-135. [DOI:10.1002/esp.3290190204]
5. Cerda, A. 2001. Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science, 52(1): 59-68. [DOI:10.1046/j.1365-2389.2001.00354.x]
6. Cousin, I., B. Nicoullaud and C. Coutadeur. 2003. Influence of rock fragments on the water retention and water percolation in a calcareous soil. Catena, 53(2): 97-114. [DOI:10.1016/S0341-8162(03)00037-7]
7. de Figueiredo, T. and J. Poesen.1998. Effects of surface rock fragment characteristics on interrill runoff and erosion of a silty loam soil. Soil and Tillage Research, 46: 81-95. [DOI:10.1016/S0167-1987(98)80110-4]
8. Gong, T. and Y. Zhu. 2018. Effect of embedded-rock fragments on slope soil erosion during rainfall events under simulated laboratory conditions. Journal of Hydrology, 563: 811-817. [DOI:10.1016/j.jhydrol.2018.06.054]
9. Guo, T., Q. Wang, D. Li and J. Zhuang. 2010. Effect of surface stone cover on sediment and solute transport on the slope of fallow land in the semi-arid loess region of northwestern China. Journal of Soils and Sediments, 10: 1200-1208. [DOI:10.1007/s11368-010-0257-8]
10. Gyssels, G., J. Poesen, G. Liu, W. Van Dessel, A. Knapen and S. De Baets. 2006. Effects of cereal roots on detachment rates of single- and double-drilled topsoils during concentrated flow. European Journal of Soil Science, 57: 381-391. [DOI:10.1111/j.1365-2389.2005.00749.x]
11. Homayounfar, V. 2014. Comparison of surface runoff and soil loss from field plots with disturbed and undisturbed soils. MSC Thesis, Tarbiat Modares University, Noor, Iran. 57 pp.
12. Hung, K.C., K. Kosugi, T.H. Lee and T. Misuyama. 2007. The effects of rock fragments on hydrologic and hydraulic responses along a slope. Hydrological Processes, 21: 1354-1362. [DOI:10.1002/hyp.6315]
13. Ilek, A., J. Kucza and W. Witek. 2019. Using undisturbed soil samples to study how rock fragments and soil macropores affect the hydraulic conductivity of forest stony soils: Some methodological aspects. Journal of hydrology, 570: 132-140. [DOI:10.1016/j.jhydrol.2018.12.067]
14. Ingelmo, F., S. Cuadrado, A. Ibanez and J. Hernandez. 1994. Hydric properties of some Spanish soils in relation to their rock fragment content-Implication for runoff and vegetation. Catena, 23(1-2): 73-85. [DOI:10.1016/0341-8162(94)90054-X]
15. Javadi, P., H. Rohipoor and A.A. Mahboobi. 2005. The role of rock fragments cover on soil erosion and runoff by using flume and rainfall simulation. Iranian Journal of Range and Desert Research, 12(3): 287-310 (In Persian).
16. Kamphorst, A. 1987. A small rainfall simulator for the determination of soil erodibility. Netherlands Journal of Agricultural Science, 35: 407-415. [DOI:10.18174/njas.v35i3.16735]
17. Katra, I., H. Laveeand and P. Sarah. 2008. The effect of rock fragment size and position on topsoil moisture on arid and semi-arid hillslopes. Catena, 72(1): 49-55. [DOI:10.1016/j.catena.2007.04.001]
18. Kirkby, M., A.J. Baird, S.M. Diamond, J.G. Lockwood, M.D. MacMahon, P.L. Mitchell, J. Shao, J.E. Sheehy, J.B. Thornes and F.I. Woodward. 1996. The MEDALUS slope catena model: a physically based process model for hydrology, ecology and land degradation interactions. In: Mediterranean Desertification and Land Use (ed. By J. B. Thornes and J. Brandt). John Wiley, Chichester, UK. 303-354.
19. Khaledi Darvishan, A., V. Homayounfar and S.H. Sadeghi. 2016. The impact of standard preparation practice on the runoff and soil erosion rates under laboratory conditions. Solid Earth, 7(5): 1293-1302. [DOI:10.5194/se-7-1293-2016]
20. Knapen, A., T. Smets and J. Poesen. 2009. Flow-retarding effects of vegetation and geotextiles on soil detachment during concentrated flow. Hydrological Processes, 23: 2427-2437. [DOI:10.1002/hyp.7360]
21. Li, L., M.A. Nearing, M.H. Nichols, V.O. Polyakov, C.L. Winter and M.L. Cavanaugh. 2020. Temporal and spatial evolution of soil surface roughness on stony plots. Soil and Tillage Research, 200: 104526. [DOI:10.1016/j.still.2019.104526]
22. Liu, J., Y.X. Shen, X.A. Zhu, G.J. Zhao, Z.M. Zhao and Z.J. Li. 2019. Spatial distribution patterns of rock fragments and their underlying mechanism of migration on steep hillslopes in a karst region of Yunnan Province, China. Environmental Science and Pollution Research, 26(24): 24840-24849. [DOI:10.1007/s11356-019-05658-1]
23. Lucas-Borja, M.E., J. González-Romero, P.A. Plaza-Álvarez, J. Sagra, M.E. Gómez, D. Moya, A. Cerdà and J. de Las Heras. 2019. The impact of straw mulching and salvage logging on post-fire runoff and soil erosion generation under Mediterranean climate conditions. Science of the Total Environment, 654: 441-451. [DOI:10.1016/j.scitotenv.2018.11.161]
24. Lv, J., H. Luo and Y. Xie. 2019. Effects of rock fragment content, size and cover on soil erosion dynamics of spoil heaps through multiple rainfall events. Catena, 172: 179-189. [DOI:10.1016/j.catena.2018.08.024]
25. Lv, J., H. Luo and Y. Xie. 2020. Impact of rock fragment size on erosion process and micro-topography evolution of cone-shaped spoil heaps. Geomorphology, 350: 106936. [DOI:10.1016/j.geomorph.2019.106936]
26. Lv, J., H. Luo, J. Hu and Y. Xie. 2019. The effects of rock fragment content on the erosion processes of spoil heaps: a laboratory scouring experiment with two soils. Journal of soils and sediments, 19(4): 2089-2102. [DOI:10.1007/s11368-018-2193-y]
27. Mirzaee, S., M. Gorji. and A. Jafari Ardakani. 2012. Effect of surface rock fragment cover on soil erosion and sediment using simulated runoff. Journal of Soil Management and Sustainable Production, 2(1): 141-154 (In Persian).
28. Morgan, R.P.C., J.N. Quinton, R.E. Smith, G. Govers, J.W.A. Poesen, K. Auerswald, G. Cnisci, D. Torri and M.E. Styczen. 1998. The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 23: 527-544. https://doi.org/10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5 [DOI:10.1002/(SICI)1096-9837(199806)23:63.0.CO;2-5]
29. Mosaffaie, J., M.R. Ekhtesasi, M.T. Dastorani, H.R. Azimzadeh and M.A.Z. Chahuki. 2015. Temporal and spatial variations of the water erosion rate. Arabian journal of Geosciences, 8(8): 5971-5979. [DOI:10.1007/s12517-014-1628-z]
30. Niu, Y., Z. Gao, Y. Li and K. Luo. 2019. Effect of rock fragment content on erosion processes of disturbed soil accumulation under field scouring conditions. Journal of soils and sediments, 19(4): 1708-1723. [DOI:10.1007/s11368-018-2200-3]
31. Poesen, J. and H. Lavee. 1991. Effect of size and incorporation of synthetic mulch on runoff and sediment yield from interrills in a laboratory study with simulated rainfall. Soil and Tillage Research, 21: 209-223. [DOI:10.1016/0167-1987(91)90021-O]
32. Poesen, J. and H. Lavee. 1994. Rock fragments in top soils: significance and processes. Catena, 23(1): 1-28. [DOI:10.1016/0341-8162(94)90050-7]
33. Poesen, J., E. De Luna, A. Franca, J. Nachtergaele and G. Govers. 1999. Concentrated flow erosion rates as affected by rock fragment cover and initial soil moisture content. Catena, 36: 315-329. [DOI:10.1016/S0341-8162(99)00044-2]
34. Poesen, J., F. Ingelmo-Sanchez and H. Mucher. 1990. The hydrological response of soil surfaces to rainfall as affected by cover and position of rock fragments in the top layer. Earth Surface Processes and Landforms, 15(7): 653-671. [DOI:10.1002/esp.3290150707]
35. Poesen, J., D. Torri and K. Bunte. 1994. Effects of rock fragments on soil erosion by water at different spatial scales: a review. Catena, 23(1-2): 141-166. [DOI:10.1016/0341-8162(94)90058-2]
36. Poesen, J., B. van Wesemael, K. Bunte and A.S. Benet. 1998. Variation of rock fragment cover and size along semiarid hillslopes: a case-study from southeast Spain. Geomorphology, 23(2-4): 323-335. [DOI:10.1016/S0169-555X(98)00013-0]
37. Rieke‐Zapp, D., J. Poesen and M.A. Nearing. 2007. Effects of rock fragments incorporated in the soil matrix on concentrated flow hydraulics and erosion. Earth Surface Processes and Landforms, 32(7): 1063-1076. [DOI:10.1002/esp.1469]
38. Shengqiang, T. and S. Dongli. 2018. Synergistic effects of rock fragment cover and polyacrylamide application on erosion of saline-sodic soils. Catena, 171: 154-165. [DOI:10.1016/j.catena.2018.06.033]
39. Smets, T., J. Poesen and E. Bochet. 2008. Impact of plot length on the effectiveness of different soil-surface covers in reducing runoff and soil loss by water. Progress in Physical Geography, 32: 654-677. [DOI:10.1177/0309133308101473]
40. Torri, D., J. Poesen, F. Monaci and E. Busoni. 1994. Rock fragment content and fine soil bulk-density, Catena, 23(1-2): 65-71. [DOI:10.1016/0341-8162(94)90053-1]
41. Valentin, C. 1994. Surface sealing as affected by various rock fragment cover in West Africa. Catena, 23(1-2): 87-97. [DOI:10.1016/0341-8162(94)90055-8]
42. Valentin, C. and A. Casenave. 1992. Infiltration into sealed soil as influenced by gravel cover. Soil Science Society of America Journal, 56(6): 1667-1673. [DOI:10.2136/sssaj1992.03615995005600060002x]
43. Van Wesemael, B., J. Poesen, C.S. Kosmas, N.G. Danalatos and J. Nachtergaele. 1996. Evaporation from cultivate soil containing rock fragments. Journal of Hydrology, 182(1-4): 65-82. [DOI:10.1016/0022-1694(95)02931-1]
44. Wang X., Z. Li, C. Cai, Z. Shi, Q. Xu, Z. Fu and Z. Gua. 2012. Effects of rock fragment cover on hydrological response and soil loss from Regosols in a semi-humid environment in South-West China. Geomorphology, 151-152: 234-242. [DOI:10.1016/j.geomorph.2012.02.008]
45. Wang, P.K. and H.R. Pruppacher. 1977. Acceleration to Terminal Velocity of Cloud and Raindrops. Journal of Applied Meteorology, 16: 275-280. https://doi.org/10.1175/1520-0450(1977)016<0275:ATTVOC>2.0.CO;2 [DOI:10.1175/1520-0450(1977)0162.0.CO;2]
46. Xia, L., X. Song, N. Fu, S. Cui, L. Li, H. Li and Y. Li. 2018. Effects of rock fragment cover on hydrological processes under rainfall simulation in a semi‐arid region of China. Hydrological Processes, 32(6): 792-804. [DOI:10.1002/hyp.11455]
47. Zavala, L.M., A. Jordan, N. Bellinfante and J. Gil. 2010. Relationships between rock fragment cover and soil hydrological response in a Mediterranean environment. Soil Science and Plant Nutrition, 56: 95-104. [DOI:10.1111/j.1747-0765.2009.00429.x]
48. Zhao, B., L. Zhang, Z. Xia, W. Xu, L. Xia, Y. Liang and D. Xia. 2019. Effects of Rainfall Intensity and Vegetation Cover on Erosion Characteristics of a Soil Containing Rock Fragments Slope. Advances in Civil Engineering, Article ID 7043428, 14 pp. [DOI:10.1155/2019/7043428]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb