دوره 12، شماره 23 - ( بهار و تابستان 1400 )                   جلد 12 شماره 23 صفحات 64-54 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zareii B, Gholami L, Kavian A, Shahedi K. (2021). Effect of Change in Plot Size on Performance of Organic Manure on Changing Runoff and Soil Loss Components under Laboratory Conditions. jwmr. 12(23), 54-64. doi:10.52547/jwmr.12.23.54
URL: http://jwmr.sanru.ac.ir/article-1-992-fa.html
زارعی بهزاد، غلامی لیلا، کاویان عطااله، شاهدی کاکا. اثر تغییر اندازه کرت در عملکرد کود آلی بر تغییر مولفه های رواناب و هدررفت خاک در شرایط آزمایشگاهی پ‍‍ژوهشنامه مديريت حوزه آبخيز 1400; 12 (23) :64-54 10.52547/jwmr.12.23.54

URL: http://jwmr.sanru.ac.ir/article-1-992-fa.html


گروه مهندسی آبخیزداری، داﻧﺸﮑﺪه منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران
چکیده:   (2283 مشاهده)
     تغییرات در اندازه کرت می­تواند مشخص کننده تاثیرات آن بر تغییرات مولفه­های رواناب و هدررفت خاک باشد. از سویی نیز رواناب تولید شده در خاک­های فرسایش ­یافته یکی از مهم­ترین موانع و چالش‌های بشر در حفاظت از منابع آب و خاک بوده و نیز تهدیدی برای رفاه و حیات می­باشد. یکی از مهم‌ترین عوامل کنترل­ کننده رواناب سطحی و افزایش نفوذ خاک، کاربرد افزودنی­ ها یا مواد اصلاح­ کننده به خاک می‌باشد. اما بایستی توجه داشت که تغییر اندازه کرت نیز می ­تواند تغییرات رواناب و هدررفت خاک را کنترل نماید. بنابراین پژوهش حاضر به ­منظور بررسی اثر تغییر اندازه در کرت‌های آزمایشگاهی در دو اندازه 0/25 × 0/5 و 0/5 × 1 مترمربع با استفاده از کود آلی با مقادیر صفر (تیمار شاهد) 62/5 و 125 (تیمار حفاظتی) گرم بر مترمربع بر تغییرات زمان شروع، ضریب رواناب، هدررفت خاک وغلظت رسوب انجام گرفت. نتایج به­ دست آمده نشان داد در کرت‌هایی با اندازه 0/25× 0/5 مترمربع و کاربرد کود آلی با مقدار 62/5 گرم بر مترمربع تاثیر اندکی بر افزایش زمان شروع رواناب نسبت به تیمار شاهد داشت. اما با افزایش اندازه کرت و هم­چنین میزان کود آلی زمان شروع رواناب افزایش یافت. تاثیر اندازه کرت روی مولفه ­های ضریب رواناب، هدررفت خاک و غلظت رسوب، کود آلی بر مولفه ­های زمان شروع رواناب، ضریب رواناب و هدررفت خاک و اثر متقابل تغییر اندازه و تیمار کود آلی برای مولفه هدررفت خاک در سطح 99 درصد معنی‌دار بود. هم­چنین در کرت با مساحت 0/5 × 1/0 مترمربع تغییرات مولفه‌های زمان شروع و ضریب رواناب، هدررفت خاک و غلظت رسوب برای کود آلی با مقدار 125 گرم بر مترمربع نسبت به مقدار 62/5 گرم بر مترمربع به ­ترتیب 72/83، 53/52، 212/27- و 142/92- درصد بود. درحالی­که تغییرات مولفه ­های بررسی شده برای کرت 0/25 × 0/5 مترمربع به­ترتیب 594/24، 212/63-، 4/06 و 13/70 درصد بود.
متن کامل [PDF 1424 kb]   (476 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: حفاظت آب و خاک
دریافت: 1397/11/9 | ویرایش نهایی: 1400/5/26 | پذیرش: 1398/5/19 | انتشار: 1400/5/26

فهرست منابع
1. Ahmadi, H. 2012. Applied geomorphology, water erosion. 4th edn., Tehran University Press, Iran, 688 pp (In Persian).
2. Arnaez, J., T. Lasanta, P. Ruiz-Flaño and L. Ortigosa. 2007. Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil and Tillage Research, 93(2): 324-334. [DOI:10.1016/j.still.2006.05.013]
3. Asadzadeh, F., M. Gorgi. A. Vaezi, R. Sokouti and M. Shorafa. 2012. Scale effect on runoff from filed plots under natural rainfall. Journal of Agriculture and Environmental. Sciences, 12(9): 1148-1152.
4. Asadzadeh, F., M. Gorji, A. Vaezi, R. Sokouti and S. Mirzaee. 2013. Effect of plot size on measured runoff and sediment yield from natural rain-storms. Journal of Water and Soil Resources Conservation, 2(4): 69-80 (In Persian).
5. Bagarello, V. and V. Ferro. 2010. Analysis of soil loss data from plots of differing length for the Sparacia experimental area, Sicily, Italy. Biosystems Engineering, 105(3): 411-422. [DOI:10.1016/j.biosystemseng.2009.12.015]
6. Boix-Fayos, C., M. Mena. E. Rosalén. A. Cases and V. Castillo. 2006. Measuring soil erosion by field plots: Understanding the sources of variation. Earth Science Reviews, 78(3-4): 267-285. [DOI:10.1016/j.earscirev.2006.05.005]
7. Cerdan, O., Y. L. Bissonnais, V. Souchère. P. Martin and V. Lecomte. 2002. Sediment concentration in interrill flow: interactions between soil surface conditions, vegetation and rainfall. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 27(2): 193-205. [DOI:10.1002/esp.314]
8. Darboux, F., Ph. Davy. C. Gascuel Odoux and C. Hung. 2001. Evolution of soil surface roughness and flow path connectivity in overland flow experiments. Catena, 46: 125-139. [DOI:10.1016/S0341-8162(01)00162-X]
9. Daverede, I.C., A.N. Kravchenko, R.G. Hoeft, E.D. Nafziger, D.G. Bullock, J.J. Warren and L.C. Gonzini. 2004. Phosphorus runoff from incorporated and surface-applied liquid swine manure and phosphorus fertilizer. Journal of Environmental Quality, 33: 1535-1544. [DOI:10.2134/jeq2004.1535]
10. Defersha, M.B., S. Quraishi and A. Mellese. 2011. The effect of slope steepness and antecedent moisture content on interrill erosion, runoff and sediment size distribution in the highlands of Ethiopia. Hydrology and Earth System Sciences, 15: 2367-2375. [DOI:10.5194/hess-15-2367-2011]
11. Dendy, F.E. and G.C. Bolton. 1976. Sediment yield runoff drainage area relationship in the United States. Journal of Soil and Water Conservation, 31: 264-266.
12. Ekwue, E.I. 1991. The effects of soil organic matter content, rainfall duration and aggregate size on soil detachment. Soil Technology, 4(3): 197-207. [DOI:10.1016/0933-3630(91)90001-4]
13. Fernández, C., J.A. Vega, E. Jiménez, D.C.S. Vieira, A. Merino, A. Ferreiro and T. Fonturbel. 2012. Seeding and mulching+seeding effects on post-fire runoff, soil erosion and species diversity in Galicia (NW Spain), Land Degradation and Development, 23: 150-156. [DOI:10.1002/ldr.1064]
14. Gholami, L., K. Banasik, S.H.R. Sadeghi, A. Khaledi Darvishan and L. Hejduk. 2014. Effectiveness of straw mulch on infiltration, splash erosion, runoff and sediment in laboratory conditions. Journal of Water and Land Development, 22 (VII-IX): 51-60. [DOI:10.2478/jwld-2014-0022]
15. Gholami, L., S.H.R. Sadeghi and M. Homaee. 2013. Straw mulching effect on splash erosion, runoff and sediment y ield from eroded plots. Soil Science Society of American Journal, 77: 268-278. [DOI:10.2136/sssaj2012.0271]
16. Gholami, L., S.H.R. Sadeghi and M. Homaee. 2016. Different effects of sheep manure conditioner on runoff and soil loss components in eroded soil. Catena, 139: 99-104. [DOI:10.1016/j.catena.2015.12.011]
17. Gholami, L., S.H.R. Sadeghi and M. Homaee. 2017a. Splash Erosion Control using Sheep Manure. Organizing Committee of 14th International Symposium on the Interactions between Sediments and Water - Taormina, Italy 17-22 June, 2017. 16 pp.
18. Gholami, L., S.H.R. Sadeghi and M. Homaii. 2017b. Effect of soil amendments on hydrograph and sediment graph changes in the laboratory conditions. Journal of Watershed Management Research, 8(16): 100-112 (In Persian). [DOI:10.29252/jwmr.8.16.100]
19. Gilley, J.E. and B. Eghball. 1998. Runoff and erosion following field application of beef cattle manure and compost. American Society of Agricultural and Engineers, 41(5): 1289-1294. [DOI:10.13031/2013.17301]
20. Gossin, C., G.J. Teichmeier, G.E. Erickson, T.J. Klopfenstein and D.T. Walters. 2003. Impact of manure application on phosphorus in surface runoff and soil erosion. Nebraska Beef Cattle Reports 2003 (Paper 228), 51-54 pp.
21. García-Orenes, F., A. Roldán, J. Mataix-Solera, A. Cerdà, M. Campoy, V. Arcenegui and F. Caravaca. 2012. Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem, Soil Use Management, 28: 571-579. [DOI:10.1111/j.1475-2743.2012.00451.x]
22. Hasanzadeh, N., L. Gholami, A. Khaledi Darvishan and H. Yonesi. 2018. Nanoclay effect on runoff and sediment in laboratory small plots. The 13th National Conference on Watershed Management Science and Engineering of Iran and the 3rd National Conference on Conservation of Natural Resources and Environment, 5 pp (In Persian).
23. Hudson, N.W. 1993. Field measurement of soil erosion and runoff. FAO Soils Bulletin, vol. 68. FAO, Rome, 20-35 pp.
24. Homauonfar, V., A. Khaledi Darvishan and S.H.R. Sadeghi. 2016. Effects of soil preparation for laboratorial erosion studies on surface runoff. Journal of Watershed Management Research, 7(14): 60-68. [DOI:10.29252/jwmr.7.14.68]
25. Jafari Haghighi, M. 2004. Methods of soil decomposition: Sampling and importance decomposition of physical and chemical with emphasis on theoretical and applied principles. Nadai Zoha Press, Iran, 236 pp (In Persian).
26. Joel, A., I. Messing, O. Seguel and M. Casanova. 2002. Measurement of surface water runoff from plots of two different sizes. Hydrological Process, 16: 1467-1478. [DOI:10.1002/hyp.356]
27. Kavian, A., L. Gholami, M. Mohammadi, V. Spalevic and M. Falah Soraki. 2018. Impact of wheat residue on soil erosion processes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2): 553-562. [DOI:10.15835/nbha46211192]
28. Kavian, A., M. Mohammadi, M. Falah Soraki and L. Gholami. 2016. Effect of wheat straw on changing time to runoff and runoff coefficient in laboratory plots under rainfall simulation. Journal of Soil and Water Resources Conservation, 5(2): 73-82 (In Persian).
29. Karimi, N., L. Gholami and A. Kavian. 2018. Hydrograph and sediment graph changes of small experimental plots affected by application of biochar treatment in different soil moisture. Iranian Journal of Watershed Management Science, 12(43): 98-107 (In Persian).
30. Kavian, A., L. Gholami, M. Mohammadi, V. Spalvic and M. Falah. 2018. Impact of wheat residue on soil erosion processes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2): 553-562. [DOI:10.15835/nbha46211192]
31. Khadem, A., A. Golchin and E. Zaree. 2014. Effects of manure and sulfur on nutrients uptake by corn (Zea mays L.). Applied Field Crops Research, 27(103): 2-11 (In Persian).
32. Lieskovský, J. and P. Kenderessy. 2014. Modelling the effect of vegetation cover and different tillage practices on soil erosion in vineyards: a case study in Vráble (Slovakia) using watem/sedem, Land Degradation and Development, 25: 288-296. [DOI:10.1002/ldr.2162]
33. Le Bissonnais, Y., H. Benkhadra, V. Chaplot, D. Fox, D. King, and J. Daroussin. 1998. Crusting, runoff and sheet erosion on silty loamy soils at various scales and up scaling from m2 to small catchments. Soil Tillage Research, 46(1): 69-80. [DOI:10.1016/S0167-1987(98)80109-8]
34. Lemma, T.M., G. Desta, A.K. Kassa, D.Ch. Edossa. 2018. Effect of spatial scale on runoff coefficient: evidence from the Ethiopian highlands. International Soil and Water Conservation Research, 6: 289-296. [DOI:10.1016/j.iswcr.2018.08.002]
35. Luk, S.H. 1985. Effect of antecedent soil moisture content on rainwash erosion. Catena, 12(1): 129-139. [DOI:10.1016/S0341-8162(85)80012-6]
36. Martínez, I.A., M.C. Ramos and J.A. Martínez-Casanovas. 2004. Effects of composted cattle manure on erosion rates and nutrient losses, EUROSOIL. Publication on CD-ROM, Session 12: Soil Erosion, 8 pp.
37. Moreno L.H., J.M. Nicolau, L. Merino-Martín and B.P. Wilcox. 2010. Plot-scale effects on runoff and erosion along a slope degradation gradient. Water Resources Research, 46, W04503. doi: 10.1029/2009WR007875. [DOI:10.1029/2009WR007875]
38. Mingguo, Z., C. Qiangguo and C. Hao. 2007. Effect of Vegetation on runoff-sediment yield relationship at different spatial scales in hilly areas of the Loess Plateau, North China, Acta Ecology Sinica, 27: 3572-3581. [DOI:10.1016/S1872-2032(07)60075-4]
39. Nyamangara, J., J. Gotosa and S.E. Mpofu. 2001. Cattle manure effects on structural stability and water retention capacity of a granitic sandy soil in Zimbabwe. Soil and Tillage Research, 62: 157-162. [DOI:10.1016/S0167-1987(01)00215-X]
40. Parhizgar, M., A. Hossein and S.A. Mousavi. 2018. Effect of plot scale on runoff under natural rainfall (Case study; Saravan region, Rasht). Iranian Journal of Soil and Water Research, 48(5): 1133-1144 (In Persian).
41. Poesen, J.W., D. Torri and K. Bunte. 1994. Effects of rock fragments on soil erosion by water at different spatial scales: a review. Catena, 23(1-2):141-166. [DOI:10.1016/0341-8162(94)90058-2]
42. Polyakov, V.O. 2002. Use of rare earth elements to trace soil erosion and sediment movement, PhD Thesis, Purdue University, Online at: http://docs.lib.edu.
43. Ramos, M.C. and J.A. Martı'nez-Casasnovas. 2006. Erosion rates and nutrient losses affected by composted cattle manure application in vineyard soils of NE Spain. Catena, 68: 177-185. [DOI:10.1016/j.catena.2006.04.004]
44. Rasoulzadeh, A. and A. Yaghoubi. 2010. Effect of cattle manure on soil physical properties on a sandy clay loam soil in North-West Iran. Journal of Food, Agriculture and Environment, 8(2 part 2): 976-979.
45. Refahi, H.Gh. 2006. Soil erosion and conservation. 5th edn. Tehran University Press, Iran, 671 pp (In Persian).
46. Rickson, R.J. 2006. Management of sediment production and prevention in river catchments: a Matter of Scale. P228-238, In: Owens, P.N and A.J. Collins (eds.), Soil Erosion and Sediment Redistribution in River Catchments. CAB International. [DOI:10.1079/9780851990507.0228]
47. Ritchey, K.D., L.D. Norton, A. Hass, J.M. Gonzalez and D.J. Snuffer. 2012. Effect of selected soil conditioners on soil properties, erosion, runoff and rye growth in nonfertile acid soil. Journal of Soil and Water Conservation, 67(4): 264-274. [DOI:10.2489/jswc.67.4.264]
48. Robichaud, P.R., S.A. Lewis, J.W. Wagenbrenner, L.E. Ashmun and R.E. Brown. 2013. Post-fire mulching for runoff and erosion mitigation - Part I: Effectiveness at reducing hillslope erosion rates, Catena, 105: 75-92. [DOI:10.1016/j.catena.2012.11.015]
49. Rohith, K.G., L.S. Michelle and M. Saied. 2012. A comparison of nutrient losses from two simulated pastureland management scenarios. Journal of Environmental Monitoring, 14(9): 2421-2429. [DOI:10.1039/c2em30390f]
50. Romkens, M.J., K. Helming and S.N. Prasad. 2002. Soil erosion under different rainfall intensities, surface roughness, and soil water regimes. Catena, 46(2-3): 103-123. [DOI:10.1016/S0341-8162(01)00161-8]
51. Ruiz-Sinoga, J.D., A. Romero-Diaz, E. Ferre-Bueno and J.F. Martinez-Murillo. 2010. The role of soil surface conditions in regulating runoff and erosion processes on a metamorphic hillslope (Southern Spain) soil surface conditions, runoff and erosion in Southern Spain. Catena, 80: 131-139. [DOI:10.1016/j.catena.2009.09.007]
52. Sadeghi, S.H.R., L. Gholami, M. Homaee and A. Darvishan. 2015. Scale effect on runoff and soil loss control using rice straw mulch under laboratory conditions. Solid Earth, 6(2): 445. [DOI:10.5194/se-6-445-2015]
53. Sharpley, A. and P. Kleinman. 2003. Effect of rainfall simulator and plot scale on overland flow and phosphorus transport. J. Environ. Quality, 32: 2172- 2179. [DOI:10.2134/jeq2003.2172]
54. Smets, T., J. Poesen and E. Bochet. 2008. Impact of plot length on the effectiveness of different soil-surface covers in reducing runoff and soil loss by water. Progress in Physical Geography, 32(6): 654-677. [DOI:10.1177/0309133308101473]
55. Thomaz, E.L. and L.R. Vestena. 2012. Measurement of runoff and soil loss from two differently sized plots in a subtropical environment (Brazil). Earth Surface Processes and Landforms, 37: 363-373. [DOI:10.1002/esp.2242]
56. Van de Giessen, N.C., T.J. Stomph, A.E. Ajayi and Z.F. Bagayoko. 2011. Scale effects in Hortonian surface runoff on agricultural slopes in West Africa: Field data and models. Agriculture, Ecosystems and Environment, 142: 95-101. [DOI:10.1016/j.agee.2010.06.006]
57. Yazdanpanah, A. and R. Motalebifard. 2016. The effects of poultry manure and potassium fertilizer on yield and nitrogen, phosphorus, potassium, zinc and copper uptake of potato. Applied Soil Research, 4(2): 60-71 (In Persian).

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb