دوره 11، شماره 22 - ( پاییز و زمستان 1399 )                   جلد 11 شماره 22 صفحات 210-219 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

siasar H, honar T. Comparison of Performance of GLM, RF and DL Models in Estimation of Reference Evapotranspiration in Zabol Synoptic Station. jwmr. 2020; 11 (22) :210-219
URL: http://jwmr.sanru.ac.ir/article-1-1000-fa.html
سیاسر هادی، هنر تورج. مقایسه عملکرد مدل‌های GLM، RF وDL در برآورد تبخیر-تعرق گیاه مرجع در ایستگاه سینوپتیک زابل. پ‍‍ژوهشنامه مديريت حوزه آبخيز. 1399; 11 (22) :210-219

URL: http://jwmr.sanru.ac.ir/article-1-1000-fa.html


دانشکده کشاورزی، دانشگاه پیام نور، تهران، ایران
چکیده:   (136 مشاهده)
   تبخیر- تعرق یکی از مهم­ترین اجزای چرخه هیدرولوژی برای برنامه­ریزی سیستم ­های آبیاری و ارزیابی اثرات هیدرولوژی تغییر اقلیم است و تعیین صحیح آن برای بسیاری از مطالعات از قبیل توازن هیدرولوژیکی آب، طراحی شبکه­ های آبیاری و زهکشی، شبیه­ سازی میزان محصولات و طراحی و بهینه ­سازی منابع آب از اهمیت بالایی برخوردار است. خاصیت غیرخطی، عدم قطعیت ذاتی و نیاز به اطلاعات متنوع اقلیمی در برآورد تبخیر وتعرق از دلایلی بوده­اند که باعث شده پژوهشگران از روش­های مبتنی­بر هوش مصنوعی استفاده نمایند. در این تحقیق جهت برآوردی دقیق از مقدار تبخیر-تعرق مرجع روزانه بین سال­های 2018-2009 در شهرستان زابل در شمال استان سیستان و بلوچستان ابتدا براساس روش استاندارد و متداول فائو- پنمن- مونتیث و داده ­های هواشناسی ایستگاه سینوپتیک زابل مقدار تبخیر-تعرق مرجع مرجع ETo  محاسبه و سپس با ارائه سناریوهای مختلفی از ترکیب پارامترهای هواشناسی شامل دمای حداکثر، دمای حداقل، دمای میانگین، رطوبت حداکثر، رطوبت حداقل، رطوبت میانگین، بارش، ساعات آفتابی، سرعت باد و تبخیر به­ عنوان ورودی مدل­های یادگیری عمیق، جنگل تصادفی و مدل خطی تعمیم ­یافته در مقیاس زمانی روزانه سعی در برآورد دقیق­ تری از تبخیر- تعرق مرجع به ­عنوان خروجی مدل شده است. در برآورد تبخیر و تعرق روزانه در مدل­های مذکور، 25 سناریو از ترکیب داده ­های هواشناسی انتخاب گردید و برای ارزیابی مدل­ها از  روش فائو-پنمن- مانتیث استفاده شد. دربین سناریوهای مورد بررسی، سناریوی M5 (دمای حداکثر، دمای حداقل، دمای میانگین، رطوبت حداکثر، رطوبت حداقل، رطوبت میانگین، سرعت باد و تبخیر از تشت) برای مدل یادگیری عمیق با ریشه میانگین مربعات خطا (0/517) میلی­متر بر روز و بیشترین ضریب همبستگی (9960 بهترین عملکرد را در بین مدل­های فوق داشتند. همچنین مدل یادگیری عمیق دقت و پایداری بیشتری نسبت به دیگر مدل­ها نشان دادند. بنابراین این تحقیق مدل یادگیری عمیق را برای برآورد تبخیر و تعرق گیاه مرجع در شهر زابل توصیه می­ کند.
متن کامل [PDF 1064 kb]   (32 دریافت)    
نوع مطالعه: كاربردي | موضوع مقاله: هواشناسی
دریافت: 1397/12/12 | ویرایش نهایی: 1399/12/13 | پذیرش: 1399/3/6 | انتشار: 1399/12/13

فهرست منابع
1. Allen, R.G., J.L. Jensen, J.L. Wright and R.D. Burman. 1989. Operational estimate of evapotranspiration. Agronomy Journal, 81: 650-662. [DOI:10.2134/agronj1989.00021962008100040019x]
2. Arel, I., D.C. Rose and T.P. Karnowski. 2010. Deep machine learning-a new frontier in artificial intelligenceresearch [research frontier]. IEEE Computational Intelligence Magazine, 5(4):13-18. [DOI:10.1109/MCI.2010.938364]
3. Babamiri, O., Y. Dinpashoh and E. Asadi. 2014. Calibration and evaluation of seven radiation- based reference crop evapotranspiration method at Urmia lake basin. Water and Soil Science, 23: 143-158 (In Persian).
4. Bengio Y. 2009. Learning Deep Architectures for Artificial Intelligence. Foundations and Trends in Machine Learning, 2(1): 1-127. [DOI:10.1561/2200000006]
5. Breiman, L. 2001. Application and analysis of random forests and machine learning. Journal of Water Management, 15(1): 5-32. [DOI:10.1023/A:1010933404324]
6. Chandler, R.E. and H.S. Wheater. 2002. Analysis of rainfall variability using generalized linear models: a case study from the west of Ireland. Water Resources Research, 38(10): 10-1. [DOI:10.1029/2001WR000906]
7. Dalto, M., J. Matuško and M. Vašak. 2015. Deep neural networks for ultra-short-term wind forecasting. In 2015 IEEE International Conference on Industrial Technology (ICIT). IEEE, 1657-1663. [DOI:10.1109/ICIT.2015.7125335]
8. Diamantopoulou, M.J., P.E. Georgiou and D.M. Papamichial. 2010. Performance evaluation of artificial neural networks in estimating reference evapotranspiration with minimal meteorological data. Global nest Journal, 13.1 (2011): 18-27. [DOI:10.30955/gnj.000758]
9. Feng, Y., N. Cui, D. Gong, Q. Zhang and L. Zhao. 2017. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agricultural Water Management, 193: 163-173. [DOI:10.1016/j.agwat.2017.08.003]
10. Ferreira, L.B., F.F. da Cunha, R.A. de Oliveira and E.I. Fernandes Filho. 2019. Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM-a new approach. Journal of Hydrology, 572: 556-570. [DOI:10.1016/j.jhydrol.2019.03.028]
11. Ghahreman, N. and A. Gharekhani. 2012. Evaluation stochastic time series models in pan evaporation estimating (case study Shiraz station). Journal of Water Research in Agriculture, 25(1): 75-81 (In Persian).
12. Glorot, X. and Y. Bengio. 2010. Understanding the difficulty of training deep feedforward neural networks. Proceedings of Machine Learning Research, 9: 249-256.
13. Goodfellow, I., Y. Bengio and A. Courville. 2016. Deep learning. 802 pp. www.deeplearningbook.org.
14. Granata, F. 2019. Evapotranspiration evaluation models based on machine learning algorithms-A comparative study. Agricultural Water Management, 217: 303-315. [DOI:10.1016/j.agwat.2019.03.015]
15. Haghighatjou, P. and A.M. AkhondAli. 2008. Computation of evapotranspiration of Sistan plain based on solar data. Second National Conference on Management of Irrigation and Drainage Networks. Ahvaz, Iran. (In Persian).
16. Hinton, G.E., S. Osindero and Y.W. The. 2006. A fast learning algorithm for deep belief nets. Neural Computation, 18(7): 1527-1554. [DOI:10.1162/neco.2006.18.7.1527]
17. Hu, Q., R. Zhang and Y. Zhou. 2016. Transfer learning for short-term wind speed prediction with deep neural networks. Renewable Energy, 85: 83-95. [DOI:10.1016/j.renene.2015.06.034]
18. Hulme, M.Z., C. Zhao and T. Jiang. 1994. Recent and future climate change in East Asia. International Journal of Climatology, 14: 637-658. [DOI:10.1002/joc.3370140604]
19. Jabloun, M. and A. Sahli. 2008. Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: application to Tunisia. Agricultural Water Management, 95: 707-715. [DOI:10.1016/j.agwat.2008.01.009]
20. Jain, S., P. Nayak and K. Sudheer. 2008. Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation. Hydrological Processes: An International Journal, 22(13): 2225-2234. [DOI:10.1002/hyp.6819]
21. Keskin, M.E., O. Terzi, E.D. Taylan and D.K. Ücukyaman. 2009. Meteorological drought analysis using data-driven models for the lakes district, Turkey. Hydrolgical Sciences Journal, 54(6): 1114-1124. [DOI:10.1623/hysj.54.6.1114]
22. Keyvanrad, M.A. and M.M. Homayounpour. 2015. Deep Belief Network Training Improvement Using EliteSamples Minimizing Free Energy. International Journal of Pattern Recognition and Artificial Intelligence, 29(5): 155-166. [DOI:10.1142/S0218001415510064]
23. Kişi, Ö. 2009. Modeling monthly evaporation using two different neural computing techniques. Irrigation Science, 27(5): 417-430. [DOI:10.1007/s00271-009-0158-z]
24. Liu, J.N. 2014. Deep Neural Network Based Feature Representation for Weather Forecasting. In Proceedings on the International Conference on Artificial Intelligence (ICAI). The Steering Committee of the World Congress in Computer Science, Computer Engineering and Applied Computing (World Comp).
25. Luo, Y., S. Traore, X. Lyu, W. Wang, Y. Wang, Y. Xie, X. Jiao and G. Fipps. 2015. Medium range daily reference evapotranspiration forecasting by using ANN and public weather forecasts. Water Resources Management, 29(10): 3863-3876. [DOI:10.1007/s11269-015-1033-8]
26. Mattar, M.A., A.A. Alazba, B. Alblewi, B. Gharabaghi and M.A. Yassin. 2016. Evaluating and calibrating reference evapotranspiration models using water balance under hyper-arid environment. Water Resources Management, 30: 3745-3767. [DOI:10.1007/s11269-016-1382-y]
27. Mendicino, G. and A. Senatore. 2013. Regionalization of the Hargreaves coefficient for the assessment of distributed reference evapotranspiration in Southern Italy. Journal of Irrigation and Drainage Engineering, 139: 349-362. [DOI:10.1061/(ASCE)IR.1943-4774.0000547]
28. Nykodym, T., T. Kraljevic, N. Hussami, A. Rao and A. Wang. 2016. Generalized linear modeling with h2o .Published by H2O. ai Inc.
29. O'Brien, R. and H. Ishwaran. 2019. A random forests quantile classifier for class imbalanced data. Pattern recognition, 90: 232-249. [DOI:10.1016/j.patcog.2019.01.036]
30. Palmer, T., F. Doblas-Reyes, R. Hagedorn and A. Weisheimer. 2005. Probabilistic prediction of climate using multi-model ensembles: from basics to applications. Philosophical Transactions of the Royal Society B: Biological Sciences 360(1463): 1991-1998. [DOI:10.1098/rstb.2005.1750]
31. Pregibon, D. and T.J. Hastie. 2017. Generalized linear models. In Statistical Models in S; Momirovic, K., Mildner, V., Eds. Routledge: London, UK, 195-247. [DOI:10.1201/9780203738535-6]
32. Saggi, M.K. and S. Jain. 2019. Reference evapotranspiration estimation and modeling of the Punjab Northern India using deep learning. Computers and Electronics in Agriculture, 156: 387-398. [DOI:10.1016/j.compag.2018.11.031]
33. Silva, D., F. Meza and E. Varas. 2010. Estimating reference evapotranspiration (ETO)using numerical weather forecast data in central Chile. Journal Hydrol, 382(14): 64-71. [DOI:10.1016/j.jhydrol.2009.12.018]
34. Tian, D. and C.G. Martinez. 2012. Forecasting reference evapotranspiration using retro-spective forecast analogs in the South-eastern United States. Journal Hydrometeorol, 1(3): 1874-1892. [DOI:10.1175/JHM-D-12-037.1]
35. Traore, S., Y.M. Wang and T. Kerh. 2010. Artificial neural network for modeling reference evapotranspiration complex process in Sudano-Sahelian zone. Water Resources Management, 97(5): 707-714. [DOI:10.1016/j.agwat.2010.01.002]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2021 All Rights Reserved | Journal of Watershed Management Research

Designed & Developed by : Yektaweb