1. Abdollahi, S., H.R. Pourghasemi, G. Ghanbarian and R. Safaeian. 2018. Spatial Simulation and Land-Subsidence Susceptibility Mapping Using Maximum Entropy Model. Journal of Watershed Management Research, 10(20): 133-144. [
DOI:10.29252/jwmr.10.20.133]
2. Alesheikh, A.A., A. Ghorbanali and N. Nouri. 2007. Coastline change detection using remote sensing. International Journal of Environmental Science and Technology, 4(1): 61-66. [
DOI:10.1007/BF03325962]
3. Aobpaet, A., M.C. Cuenca, A. Hooper and I. Trisirisatawong. 2013. In SAR time-series analysis of land subsidence in Bangkok, Thailand. International Journal of Remote Sensing, 34: 2969-2982. [
DOI:10.1080/01431161.2012.756596]
4. Amiri, M., H.R. Pourghasemi, G.A. Ghanbariana and S.F. Afzali. 2019. Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms. Geoderma, 340: 55-69. [
DOI:10.1016/j.geoderma.2018.12.042]
5. Arabameri, A., K. Rezaei, K. Shirani and M. Yamani. 2017. Identify Areas Susceptible to Landslides using new Synthetic Method Shannon's Entropy Index-Information Value (Case Study: Karoon Sarkhon Watershed). Watershed Management Research, 9(17): 132-144. [
DOI:10.29252/jwmr.9.17.132]
6. Chen, C., S. Pei and J. Jiao. 2003. Land subsidence caused by groundwater exploitation in Suzhou City, China. Hydrogeology Journal, 11(2): 275-287. [
DOI:10.1007/s10040-002-0225-5]
7. Elith, J., S. Phillips, T. Hastie, M. Dudík, Y. Chee and C. Yates. 2010. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1): 43-57. [
DOI:10.1111/j.1472-4642.2010.00725.x]
8. Galloway, D.L., D.R. Jones and S.E. Ingebritsen. 1999. Land subsidence in the United States. United States Geological Survey Circular, 1182, 175 pp. [
DOI:10.3133/cir1182]
9. Gambolati, G., P. Gatto, and R.A. Freeze. 1974. Mathematical simulation of the subsidence of Venice: 2. Results. Water Resources Research, 10: 563-577. [
DOI:10.1029/WR010i003p00563]
10. Holzer., T.L. 1989. State and local response to damaging land subsidence in United States urban areas. Engineering Geology, 27: 449-466. [
DOI:10.1016/0013-7952(89)90041-0]
11. Hu, R.L., Z.Q. Yue, L.C. Wang and S.J. Wang. 2004. Review on Current Status and Challenging Issues of Land Subsidence in China. Engineering Geology, 76: 65-77. [
DOI:10.1016/j.enggeo.2004.06.006]
12. Karimzadeh., S. 2016. Characterization of land subsidence in Tabriz basin (NW Iran) using InSAR and watershed analyses. Acta Geodaetica et Geophysica, 51(2): 181-195. DOI 10.1007/s40328-015-0118-4. [
DOI:10.1007/s40328-015-0118-4]
13. Khorsandi, A. and M. Abdali. 2009. Sinkhole formation hazards, case study: Sinkholes hazard in Hamadan Plain and Lar Valley of Iran; Proceeding of the 6th Euregeo Congress, Munich, Germany, 359-362 pp.
14. Maleki, A. and P. Rezaee. 2016. Forecast locations at risk of subsidence plain Kermanshah. The journal of spatial planning, 20(1): 235-251 (In Persian).
15. Mirassi, S. and H. Rahnema. 2016. Analysis and evaluate the effective parameters on land subsidence. Modares civil engineering journal, 16(1): 45-54 (In Persian).
16. Mohammady, M., H.R. Morady, H. Zeinivand and A.J.A.M. Temme. 2015. A Comparison of Supervised, Unsupervised and Synthetic Land Use Classification Methods in the North of Iran. International Journal of Environmental Science and Technology, 12(5): 1515-1526 [
DOI:10.1007/s13762-014-0728-3]
17. Mohammady, M., H.R. Pourghasemi and M. Amiri. 2019. Assessment of land subsidence susceptibility in Semnan plain (Iran): a comparison of support vector machine and weights of evidence data mining algorithms. Natural Hazards, 99: 951-971. [
DOI:10.1007/s11069-019-03785-z]
18. Moore, I.D., R.B. Grayson and A. Ladson. 1991. Digital terrain modeling: a review of hydrological, geomorphological, and biological applications. Hydrological Process, 5: 3-30. [
DOI:10.1002/hyp.3360050103]
19. Naghibi, S.A., H.R. Pourghasemi, Z.S. Pourtaghie and A. Rezaei. 2015. Groundwater qanat potential mapping using frequency ratio and Shannon's entropy models in the Moghan Watershed, Iran. Earth Science Informatics, 8(1): 171-186. [
DOI:10.1007/s12145-014-0145-7]
20. Nefeslioglu, H.A., T.Y. Duman and S. Durmaz. 2008. Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Easten Black Sea Region of Turkey). Geomorphology, 94: 401-418. [
DOI:10.1016/j.geomorph.2006.10.036]
21. Ortiz-Zamora, D. and A. Ortega-Guerrero. 2010. Evolution of long-term land subsidence near Mexico City: review, field investigations, and predictive simulations. Water Resources Research, 46: 183-186. [
DOI:10.1029/2008WR007398]
22. Phillips, S., R. Anderson and R. Schapire. 2006. Maximum entropy modelling of species geographic distributions. Ecological Modelling, 190: 231-259. [
DOI:10.1016/j.ecolmodel.2005.03.026]
23. Pirouzi, A. and A. Eslami. 2017. Ground subsidence in plains around Tehran: site survey, records compilation and analysis. International Journal of Geo-Engineering, 8(30): 1-21. [
DOI:10.1186/s40703-017-0069-4]
24. Pourghasemi, H.R., M. Mohammady and B. Pradhan. 2012. Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena, 97: 71-84. [
DOI:10.1016/j.catena.2012.05.005]
25. Qin, H., C.B. Andrews, F. Tian, G. Cao, Y. Luo and J. Liu. 2018. Groundwater-pumping optimization for land-subsidence control in Beijing plain, China. Hydrogeology Journal, 26: 1061-1081. [
DOI:10.1007/s10040-017-1712-z]
26. Qu, F.F., Z. Lu, Q. Zhang, G.W. Bawden, J.W. Kim, C.Y. Zhao and W. Qu. 2015. Mapping ground deformation over Houston- Galveston, Texas using multi-temporal InSAR. Remote Sensing of Environment, 169: 290-306. [
DOI:10.1016/j.rse.2015.08.027]
27. Ramakrishna, D., M.K. Ghose, R. Vinu Chandra and A. Jeyaram. 2005. Probabilistic techniques, GIS and remote sensing in landslide hazard mitigation: a case study from Sikkim Himalayas, India. Geocarto International, 20(4): 53-58. [
DOI:10.1080/10106040508542364]
28. Santos, S.M., J.J.S.P. Cabral and I.D.S. Pontes Filho. 2012. Monitoring of soil subsidence in urban and coastal areas due to groundwater overexploitation using GPS. Natural Hazards, 64: 421-439. [
DOI:10.1007/s11069-012-0247-9]
29. Sharma, L.P., P. Nilanchal, M.K. Ghose and P. Debnath. 2010. Influence of Shannon's entropy on landslide-causing parameters for vulnerability study and zonation-a case study in Sikkim, India. Arabian Journal of Geoscience, 5(3): 421-431. [
DOI:10.1007/s12517-010-0205-3]
30. Shi, X.Q., J.C. Wu, S.J. Ye, Y. Zhang, Y.Q. Xue, Z.X. Wei, Q.F. Li and J. Yu. 2008. Regional land subsidence simulation in Su-xi-Chang area and Shanghai City, China. Engineering Geology, 100(1): 27-42. [
DOI:10.1016/j.enggeo.2008.02.011]
31. Suganthi, S., L. Elango and S.K. Subramanian. 2017. Microwave D-InSAR technique for assessment of land subsidence in Kolkata city, India. Arabian Journal of Geoscience, 10(458): 1-10. [
DOI:10.1007/s12517-017-3207-6]
32. Wilson, W.L. and B.F. Beck. 1992. Hydrogeologic factors in affecting new sinkhole development in the Orlando area, Florida. Ground Water, 30(6): 918-930. [
DOI:10.1111/j.1745-6584.1992.tb01575.x]
33. Xu, Y.S., Y. Yuan, S.L. Shen, Z.Y. Yin, H.N. Wu and L. Ma. 2015. Investigation into subsidence hazards due to groundwater pumping from aquifer II in Changzhou, China. Natural Hazards, 78(1): 281-296. [
DOI:10.1007/s11069-015-1714-x]
34. Xue, Y.Q., Y. Zhang, S.J. Ye, J.C. Wu and Q.F. Li. 2005. Land subsidence in China. Environmental Geology, 48(6): 713-720. [
DOI:10.1007/s00254-005-0010-6]
35. Ye, S., Y. Xue, J. Wu, X. Yan and J. Yu. 2016. Progression and mitigation of land subsidence in China. Hydrogeology Journal, 24: 685-693. [
DOI:10.1007/s10040-015-1356-9]
36. Yesilnacar, E.K. 2005. The application of computational intelligence to landslide susceptibility mapping in Turkey. PhD Thesis, Department of Geomatics the University of Melbourne, p. 423.
37. Yufeng, S. and J. Fengxiang. 2009. Landslide stability analysis based on generalized information entropy. International Conference on Environmental Science and Information Application Technology, 83-85. [
DOI:10.1109/ESIAT.2009.258]