1. Baba Ali, H. and R. Dehghani. 2017. Comparison of intelligent models in estimating monthly precipitation of Kaka Reza. Ecology, 4(1): 1-11.
2. Khalili, N., S.R. Khodashenas, K. Davary, M.M. Baygi and F. Karimaldini. 2016. Prediction of rainfall using artificial neural networks for synoptic station of Mashhad: a case study. Arabian Journal of Geosciences, 9(13): 624. [
DOI:10.1007/s12517-016-2633-1]
3. Ghorbani, M., A. Azani and S. Mahmoudi Vanolya. 2015. Rainfall-Runoff Modeling Using Hybrid Intelligent Models. Iran-Water Resources Research, 11(2): 146-150 (In Persian).
4. Akrami, S.A., V. Nourani and S.J.S. Hakim. 2014. Development of nonlinear model based on wavelet-ANFIS for rainfall forecasting at Klang Gates Dam. Water resources management, 28(10): 2999-3018. [
DOI:10.1007/s11269-014-0651-x]
5. Azad, A., M. Manoochehri, H. Kashi, S. Farzin, H. Karami, V. Nourani and J. Shiri. 2019. Comparative evaluation of intelligent algorithms to improve adaptive neuro-fuzzy inference system performance in precipitation modeling. Journal of Hydrology, 571: 214-224. [
DOI:10.1016/j.jhydrol.2019.01.062]
6. Chang, T.K., A. Talei, C. Quek and V.R. Pauwels. 2018. Rainfall-runoff modelling using a self-reliant fuzzy inference network with flexible structure. Journal of hydrology, 564: 1179-1193. [
DOI:10.1016/j.jhydrol.2018.07.074]
7. Danladi, A., M. Stephen, B.M. Aliyu, G.K. Gaya, N.W. Silikwa and Y. Machael. 2018. Assessing the influence of weather parameters on rainfall to forecast river discharge based on short-term. Alexandria Engineering Journal, 57(2): 1157-1162. [
DOI:10.1016/j.aej.2017.03.004]
8. Dabral, P.P. and M.Z. Murry. 2017. Modelling and forecasting of rainfall time series using SARIMA. Environmental Processes, 4(2): 399-419. [
DOI:10.1007/s40710-017-0226-y]
9. Jang, J.S 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE transactions on systems, man, and cybernetics, 23(3): 665-685. [
DOI:10.1109/21.256541]
10. Kumar, N and G.K. Jha. 2013. A time series ANN approach for weather forecasting. Int J Control Theory Comput Model (IJCTCM), 3(1): 19-25. [
DOI:10.5121/ijctcm.2013.3102]
11. Lee, S., S. Cho and P.M. Wong. 1998. Rainfall prediction using artificial neural networks. Journal of geographic information and Decision Analysis, 2(2): 233-242.
12. Mekanik, F., M.A. Imteaz and A. Talei. 2016. Seasonal rainfall forecasting by adaptive network-based fuzzy inference system (ANFIS) using large scale climate signals. Climate dynamics, 46(9-10): 3097-3111. [
DOI:10.1007/s00382-015-2755-2]
13. Mehr, A.D., V. Nourani, V.K. Khosrowshahi and M.A. Ghorbani. 2019. A hybrid support vector regression-firefly model for monthly rainfall forecasting. International Journal of Environmental Science and Technology, 16(1): 335-346. [
DOI:10.1007/s13762-018-1674-2]
14. Mendel, J.M. 2001. Uncertain rule-based fuzzy logic systems: introduction and new directions. Prentice.
15. Mislan, H., S. Hardwinarto and M.A. Sumaryono. 2015. Rainfall monthly prediction based on artificial neural network: a case study in Tenggarong Station, East Kalimantan-Indonesia. Procedia Computer Science, 59: 142-151. [
DOI:10.1016/j.procs.2015.07.528]
16. Nagahamulla, H.R., U.R. Ratnayake and A. Ratnaweera. 2012. An ensemble of artificial neural networks in rainfall forecasting. In Advances in ICT for Emerging Regions (ICTer), 2012 International Conference on (176-181). IEEE. [
DOI:10.1109/ICTer.2012.6423032]
17. Nasseri, M., K. Asghari and M.J. Abedini. 2008. Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network. Expert Systems with Applications, 35(3): 1415-1421. [
DOI:10.1016/j.eswa.2007.08.033]
18. Nourani, V., M.T. Alami and M.H. Aminfar. 2009. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Engineering Applications of Artificial Intelligence, 22(3): 466-472. [
DOI:10.1016/j.engappai.2008.09.003]
19. Nozari, H. and F. Tavakoli. 2019. Evaluation of the Efficiency of Linear and Nonlinear Models in Predicting Monthly Rainfall (Case Study: Hamedan Province). Journal of Watershed Management Research. 10 (20): 1-12 (In Persian). [
DOI:10.29252/jwmr.10.20.1]
20. Purnomo, H.D., K.D. Hartomo and S.Y.J. Prasetyo. 2017. Artificial neural network for monthly rainfall rate prediction. In IOP Conference Series: Materials Science and Engineering (180(1): 012057). IOP Publishing. [
DOI:10.1088/1757-899X/180/1/012057]
21. Shafaei, M., J. Adamowski, A. Fakheri-Fard, Y. Dinpashoh and K. Adamowski. 2016. A wavelet-SARIMA-ANN hybrid model for precipitation forecasting. Journal of Water and Land Development, 28(1): 27-36. [
DOI:10.1515/jwld-2016-0003]
22. Toth, E., A. Brath and A. Montanari. 2000. Comparison of short-term rainfall prediction models for real-time flood forecasting. Journal of hydrology, 239(1-4): 132-147. [
DOI:10.1016/S0022-1694(00)00344-9]
23. Valipour, E., M.A. Ghorbani and E. Asadi. 2020. Rainfall Network Optimization using Information Entropy and Fire Fly Algorithm Case Study: East Basin of Urmia Lake. Journal of Watershed Management Research, 11(21): 11-23 (In Persian).
24. Wong, K.W., P.M. Wong, T.D. Gedeon and C.C. Fung. 1999. Rainfall prediction using neural fuzzy technique. URL: www. it. murdoch. edu. au/~ wong/publications/SIC97. pdf, 213-221.
25. Wong, K.W., P.M. Wong, T.D. Gedeon and C.C. Fung. 2003. Rainfall prediction model using soft computing technique. Soft Computing, 7(6): 434-438. [
DOI:10.1007/s00500-002-0232-4]
26. Xiang, Y., L. Gou, L. He, S. Xia and W. Wang. 2018. A SVR-ANN combined model based on ensemble EMD for rainfall prediction. Applied Soft Computing, 73: 874-883. [
DOI:10.1016/j.asoc.2018.09.018]
27. Yaseen, Z.M., M.I. Ghareb, I. Ebtehaj, H. Bonakdari, R. Siddique, S. Heddam and R. Deo. 2018. Rainfall pattern forecasting using novel hybrid intelligent model based ANFIS-FFA. Water resources management, 32(1): 105-122. [
DOI:10.1007/s11269-017-1797-0]