دوره 13، شماره 26 - ( پاییز و زمستان 1401 1401 )                   جلد 13 شماره 26 صفحات 57-43 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eyvazi M, Alaei N, Mostafazadeh R. (2022). Temporal Changes in Runoff and Sediment of Rivers in Sabalan Mountain. J Watershed Manage Res. 13(26), 43-57. doi:10.52547/jwmr.13.26.43
URL: http://jwmr.sanru.ac.ir/article-1-1077-fa.html
عیوضی مرتضی، علایی نازیلا، مصطفی‌زاده رئوف. تغییرات زمانی رواناب و رسوب جریان رودخانه‌های کوهستانی سبلان پ‍‍ژوهشنامه مديريت حوزه آبخيز 1401; 13 (26) :57-43 10.52547/jwmr.13.26.43

URL: http://jwmr.sanru.ac.ir/article-1-1077-fa.html


گروه منابع طبیعی، دانشکده کشاورزی و منابع طبیعی و عضو پژوهشکده مدیریت آب، دانشگاه محقق اردبیلی
چکیده:   (1561 مشاهده)
چکیده مبسوط
مقدمه و هدف: برآورد بار رسوب معلق ایستگاه‌های هیدرومتری نیازمند درک درست تغییرات مکانی و زمانی رسوب است. تغییرات و اثرپذیری هم‌زمان دبی و رسوب از تغییرات بارش از مواردی است که به‌ندرت مورد توجه قرار گرفته است. لذا، در این پژوهش تغییرات در شیب منحنی روند و نیز همبستگی نموداری مقادیر ماهانه و سالانه رواناب، رسوب ماهانه و سالانه نسبت به مقادیر بارندگی در شش ایستگاه شامل آتشگاه، پل‌سلطانی، نیر، عموقین، ویلادرق و نوران واقع در دامنه کوهستان سبلان در استان اردبیل، در یک دوره 20 ساله با استفاده از منحنی جرم مضاعف مورد ارزیابی قرار گرفت.
مواد و روش‌ها: برای رسم و تحلیل منحنی جرم مضاعف، داده‌های ماهانه بارش، رواناب و رسوب جریان در یک دوره همزمان محاسبه و تجمعی شد. شیب منحنی روند (STC) برای تعیین افزایش رواناب بر مبنای بارش و غلظت رسوب بر مبنای رواناب مورد استفاده قرار گرفت. تغییر شیب و نیز آزمون معنی‌داری در تغییرات منحنی‌های تجمعی بارش-رواناب و بارش-رسوب مورد ارزیابی قرار گرفت. در ادامه تحلیل‌های تغییر شیب، عامل کاهشی و ضریب تبیین روی نتایج انجام شد. همچنین از روش ترسیمی تیلور برای ارزیابی همبستکی میان سری‌های زمانی بارش، رواناب و رسوب موردمطالعه استفاده شد.
یافته‌ها: نتایج مقادیر تغییرات رواناب و رسوب در طول دوره آماری موجود ایستگاه‌های هیدرومتری نشان داد که به‌جز ایستگاه نیر، یکنواختی مقادیر رسوب و رواناب در طول دوره آماری وجود دارد. در صورتی‌که در ایستگاه‌ نیر در تمامی سال‌های مورد بررسی دارای بیش‌ترین مقادیر رواناب و رسوب بوده است. نتایج نمودار جرم مضاعف نشان داد که ایستگاه‌های نیر، پل‌سلطانی و آتشگاه روند تغییرات شیب منحنی در طول دوره آماری ثابت بوده، مقدار رسوب و رواناب متناسب با مقدار بارش است. اما در ایستگاه ویلادرق و نوران تغییرات روند رسوب و رواناب نسبت به بارندگی مشاهده شد. هم‌چنین در ایستگاه‌های آتشگاه و نوران داده‌ها در سال‌های اولیه فاقد روند تغییرات بوده‌اند در سال 1379 و 1384 برای ایستگاه آتشگاه و سال 1386 برای ایستگاه نوران این روند کاهش پیدا کرده است.
نتیجه‌گیری: تحلیل نمودارهای تیلور نشان داد که همبستگی میان داده‌های بارش و رواناب و رسوب در دامنه صفر تا حدود 0/4 است. تشابه نسبی ضریب تغییرات رواناب و رسوب را می‌توان با تغذیه رودخانه‌ها از ذوب برف، مقیاس زمانی سالانه تحلیل‌ها و نیز پوشش گیاهی مناسب منطقه مورد مطالعه مرتبط دانست. بر اساس تحلیل نمودارهای تیلور، مقادیر انحراف معیار داده‌های رسوب در همه ایستگاه‌ها در یک محدوده مشابه قرار دارد. علاوه براین، در همه ایستگاه‌ها مقادیر انحراف معیار داده‌های رسوب از انحراف معیار داده‌های رواناب جریان بیش‌تر بوده است.
متن کامل [PDF 2829 kb]   (730 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: فرسايش خاک و توليد رسوب
دریافت: 1399/1/7 | ویرایش نهایی: 1401/11/5 | پذیرش: 1401/2/31 | انتشار: 1401/9/10

فهرست منابع
1. Ares, G.M., M. Varni and C. Chagas. 2016. Suspended sediment concentration controllingfactors: an analysis for the Argentine Pampasregion. Hydrological Sciences Journal, 61(12): 2237-2248. [DOI:10.1080/02626667.2015.1099793]
2. A.W. Alansi., M.S. Amin, G.A. Halim, H.M.Z. Shafri, A.M. Thamer, A.R.M. Waleed, A. Aimrun and M.H. Ezrin. 2009. The effect of development and land use change on rainfall-runoff and runoff-sediment relationships under humid tropical condition: Case study of Bernam Watershed Malaysia. European Journal of Scientific Research, 31(1): 88-105.
3. Azarakhshi1, M., A. Mosaedi, M. Bashir and R. Ojaghloo Shahabi. 2017. Effects of recipitation and land use changes on sediment yield (Case study: Senobar Watershed- Torbat Heydarieh). Iran-Watershed Management Science & Engineering, 11(37): 25-33 (In Persian).
4. Dang, S., L. Xiaoyan L. Xiaoyu Y. Manfei and D. Zhang. 2018. Changes in different classes of precipitation and theImpacts on sediment yield in the Hekouzhen-Longmen Region of the Yellow river basin, China. Advances in Meteorology, 8(8): 1-15. [DOI:10.1155/2018/3537512]
5. Farajzadeh, M. and M. Garahchorlo. 2011. Analysis of the spatial and temporal suspended sediment of Qarahsu drainage basin. Environmental Erosion Research Journal, (3): 61-84 (In Persian).
6. Feiznia, S. and M. Zare-Khosh Eghbal. 2004. Sensitivity of rocks and formations to erosion and sediment yield in Latian drainage basin Area. Iranian Journal of Natural Resources Research (IJNRR), 4(11): 41-44.
7. Haji, Kh., R. Mostafazadeh, A. Esmali-Ouri and Sh. Mirzaei. 2019. Spatial and temporal variations of discharge and sediment loadsconcentration rate over some river gauge stations of West-Azarbaijan Province. Watershed Engineering and Management, 11(3): 619-632 (In Persian).
8. Hu, B., T.H. Wang, Z. Yang and X. Sun. 2011.Temporal and spatial variations of sediment rating curves in the Changjiang (Yangtze River) basin and their implications. Quaternary International, 230(1-2): 34-43. [DOI:10.1016/j.quaint.2009.08.018]
9. Karimi, N., L. Gholamiand and A. Kavian. 2019. Variations of runoff, soil loss and sediment concentration variables using different Biochar levelsin laboratory conditions. Watershed Management Research, 10(20): 38-48 (In Persian). [DOI:10.29252/jwmr.10.20.38]
10. Kavian, A., M. Mohammadi, L. Gholami and J. Rodrigo-Comino. 2018. Assessment of the spatiotemporal effects of land use changes on runoff and nitrate loads in theTalar river. Waterr, 10(445): 1-19. [DOI:10.3390/w10040445]
11. Khoshratar, R. and F. Mazinee. 2011. Statistical survey of discharge and sediment in gara sou drainage basin (Golestan Province). Geographic Space, 11(33): 101-121 (In Persian).
12. Lana-Renault, N., D.E. Regues, N. Romero, S. Muela and J.M. Garcia-Ruiz. 2010. Streamflow response and sediment yield after farmland abandonment: results from a small experimental catchment in the central Spanish Pyrenees. Pirineos, Revista de Ecologia de Montana, 165: 97-114. [DOI:10.3989/Pirineos.2010.165005]
13. Liu, J., J. Chen, J. Xu, Y. Lin, Z. Yuan and M. Zhou. 2019. Attribution of runoff variation in the headwaters of the Yangtze river based on the budyko hypothesis. International Journal of Environmental Research and Public Health, 16: 2506. [DOI:10.3390/ijerph16142506]
14. Noor, H., S. Fazli and S.M. Alibakhshi. 2013. Evaluation of the relationships between runoff-rainfall-sediment related nutrient loss (A case study: Kojour Watershed, Iran). Soil & Water Resource, 8(4): 172-177. [DOI:10.17221/10/2013-SWR]
15. Mostafazadeh, R. and S. Mehri. 2018. Trends in variability of flood coefficient in river gauge stations of Ardabil Province, Iran. Watershed Management Research, 9(17): 82-94 (In Persian). [DOI:10.29252/jwmr.9.17.82]
16. Pajouhesh, M., T. Tahmasbi and Kh. Abdollah. 2017. Simulation of runoff and sediment using the WetSpa model. Irrigation and water engineering, 8(32): 30-46 (In Persian).
17. Palamuleni, L.G., P.M. Ndomba and H.A. Annegarn. 2011. Evaluation land cover change and its impact on hydrological regim in Upper Shire river catchment, Malawi, 11(4): 845-855. [DOI:10.1007/s10113-011-0220-2]
18. Pirnia, A., M. Golshan, H. Darabi, J. Adamowski and S. Rozbeh. 2018. Using the Mann-Kendall test and double mass curve method to explore stream flow changes in response to climate and human activities. Water and Climate Change, 10(4): 1-18. [DOI:10.2166/wcc.2018.162]
19. Raghuwanshi, N.S., R. Singh and L.S. Reddy. 2006. Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India. Journal of Hydraulic Engineering, 11(1): 71-79. [DOI:10.1061/(ASCE)1084-0699(2006)11:1(71)]
20. Rodriguez-belanco, M.L., M.M. Taboada-Castro, L. Palleiro and M.T. Taboada-castro. 2010. Temporal chages in suspended sediment transport in an Atlantic catchment, NW Spain, Geomorpholigy, 123: 181-188. [DOI:10.1016/j.geomorph.2010.07.015]
21. Romero, E.N., D. Regüés and J. Latron. 2008. Relationships among rainfall, runoff, and suspended sediment in a small catchment with badlands. Catena, 74: 127-136. [DOI:10.1016/j.catena.2008.03.014]
22. Sadeghi, S.H.R. and R. Mostafazadeh. 2016. Triple diagram models for changeability evaluation of precipitation and flow discharge for suspended sediment load in different time scales. Environmental Earth Sciences, 75: 843. [DOI:10.1007/s12665-016-5621-6]
23. Sadeghi, S.H.R., B. Salavati and A. Telvari. 2010. Effects of land use change on annual runoff in Garan watershed, Kordistan province. Watershed Engineering and Management, 2(11): 111-115 (In Persian).
24. Sadeghi, S.H.R., T. Mizuyama, S. Miyata, T. Gomi, K. Kosugi, T. Fukushima, S. Mizugaki and Y. Onda. 2008. Determinant factors of sediment graphs and rating loops in a reforested watershed. Journal of Hydrology, 356: 271-282. [DOI:10.1016/j.jhydrol.2008.04.005]
25. Scott, A., W. Schoellhamer and H. David. 2004. Trends in the sediment yield of the Sacramento River, California 1957-2001. Sanfrancisco Estuary and Watershed Science, 2(2): 1-15. [DOI:10.15447/sfews.2004v2iss2art2]
26. Sutari, C.A.T., M. Van der Perk and H. Middelkoop. 2020. Spatial and temporal patterns of suspended sediment concentrations in the Rhine River. Earth and Environmental Science, 451: 012080. [DOI:10.1088/1755-1315/451/1/012080]
27. Shahid, M., H.F. Gabriel, A. Nabi, S. Haider and Sh.A. Khan. 2014. Valuation of development and land use change effects on rainfall-runoff and runoff-sediment relations of catchment area of Simly Lake Pakistan. Life Science Journal, 11(7s): 11-15.
28. Soqanloo, S.Sh. and M. Mousavi Bayegi. 2019. The effect of large-scale climatic signals on rainfall in Mazandaran Province. Watershed Management Research, 10(20): 13-23 (In Persian). [DOI:10.29252/jwmr.10.20.13]
29. Tesfaye, G.A., A. Assef and D. Kidane. 2016. Runoff, sediment load and land use/cover change relationship: the case of Maybar sub-watershed, South Wollo, Ethiopia. International Journal of River Basin Management, http://dx.doi.org/10.1080/15715124.2016.1239625. [DOI:10.1080/15715124.2016.1239625]
30. Van Rompaey, A., J. Krasa and T. Dostal. 2007. Modelling the impact of land cover changes in the Czech Republic on sediment delivery. Land Use Policy, 24: 576-583. [DOI:10.1016/j.landusepol.2005.10.003]
31. Wagesho, N. 2014. Catchment dynamics and its impact on runoff generation: Coupling watershed modelling and statistical analysis to detect catchment responses, 6(2): 73-87. [DOI:10.5897/IJWREE2013.0449]
32. Wu, L., J. Jiang, G.X. Li and X. Ma. 2018. Characteristics of pulsed runoff-erosion events under typical rainstorms in a small watershed on the Loess Plateau of China. Scientific Reports, 8: 3672. [DOI:10.1038/s41598-018-22045-x]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb