1. Abhigna, P., S. Jerritta, R. Srinivasan and V. Rajendran. 2017. Analysis of feed forward and recurrent neural networks in predicting the significant wave height at the moored buoys in Bay of Bengal. International Conference on Communication and Signal Processing (ICCSP), 1856-1860. [
DOI:10.1109/ICCSP.2017.8286717]
2. Akbarifard, S. and F. Radmanesh. 2018. Predicting sea wave height using Symbiotic Organisms Search (SOS) algorithm. Ocean Engineering, 167: 348-356. [
DOI:10.1016/j.oceaneng.2018.04.092]
3. Ali, M. and R. Prasad. 2019. Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition. Renewable and Sustainable Energy Reviews, 104: 281-295. [
DOI:10.1016/j.rser.2019.01.014]
4. Alvisi, S., G. Mascellani, M. Franchini and A. Bardossy. 2006. Water level forecasting through fuzzy logic and artificial neural network approaches. Hydrology and Earth System Sciences, 10(1): 1-17. [
DOI:10.5194/hess-10-1-2006]
5. Barzegar, R., J. Adamowski and A.A. Moghaddam. 2016. Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran. Stochastic Environmental Research and Risk Assessment, 30(7): 1797-1819. [
DOI:10.1007/s00477-016-1213-y]
6. Chiu, S.L. 1995. Extracting fuzzy rules for pattern classification by cluster estimation. In: The 6th Internat. Fuzzy Systems Association World Congress, 1-4.
7. Daubechies, I. 1992. Ten Lectures on Wavelets, SIAM, ISBN 978-0-89871-274-2 [
DOI:10.1137/1.9781611970104]
8. Deka, P.C. and R. Prahlada. 2012. Discrete wavelet neural network approach in significant wave height forecasting for multistep lead time. Ocean Engineering, 43: 32-42. [
DOI:10.1016/j.oceaneng.2012.01.017]
9. Dixit, P., S. Londhe and Y. Dandawate. 2015. Removing prediction lag in wave height forecasting using Neuro-wavelet modeling technique. Ocean Engineering, 93: 74-83. [
DOI:10.1016/j.oceaneng.2014.10.009]
10. Fernández, J.C., S. Salcedo-Sanz, P.A. Gutiérrez, E. Alexandre and C. Hervás-Martínez. 2015. Significant wave height and energy flux range forecast with machine learning classifiers. Engineering Applications of Artificial Intelligence, 43: 44-53. [
DOI:10.1016/j.engappai.2015.03.012]
11. Ferreira, C. 2006. Designing neural networks using gene expression programming. In Applied soft computing technologies: The challenge of complexity. Springer, Berlin, Heidelberg, 517-535. [
DOI:10.1007/3-540-31662-0_40]
12. Gopinath, D.I. and G.S. Dwarakish. 2015. Wave prediction using neural networks at New Mangalore Port along west coast of India. Aquatic Procedia, 4(4): 143-150. [
DOI:10.1016/j.aqpro.2015.02.020]
13. Hosseini, M., A. Roshani and I. zabbah. 2020. Modeling of groundwater fluctuations based on artificial intelligence methods (Case study: Zawah-Torbat Heidarieh plain). Journal of Watershed Management Research, 11(21): 223-235.
14. Jain, S.K., A. Das and D.K. Srivastava. 1999. Application of ANN for reservoir inflow prediction and operation. Journal of Water Resources Planning and Management. ASCE, 125(5): 263-271. [
DOI:10.1061/(ASCE)0733-9496(1999)125:5(263)]
15. Jain, P., M.C. Deo, G. Latha and V. Rajendran. 2011. Real time wave forecasting using wind time history and numerical model. Ocean Modeling, 36: 262-392. [
DOI:10.1016/j.ocemod.2010.07.006]
16. Mafi, S. and G. Amirinia. 2017. Forecasting hurricane wave height in Gulf of Mexico using soft computing methods. Ocean Engineering, 146: 352-362. [
DOI:10.1016/j.oceaneng.2017.10.003]
17. Malekmohamadi, I., M.R. Bazargan-Lari, R. Kerachian, M.R. Nikoo and M. Fallahnia. 2011. Evaluating the efficacy of SVMs, BNs, ANNs and ANFIS in wave height prediction. Ocean Engineering, 38(2-3): 487-497. [
DOI:10.1016/j.oceaneng.2010.11.020]
18. McCulloch, W.S. and W. Pitts. 1943. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4): 115-133. [
DOI:10.1007/BF02478259]
19. Montaseri, M., S.Z.Z. Ghavidel and H. Sanikhani. 2018. Water quality variations in different climates of Iran: toward modeling total dissolved solid using soft computing techniques. Stochastic Environmental Research and Risk Assessment, 32(8): 2253-2273. [
DOI:10.1007/s00477-018-1554-9]
20. Nitsure, S.P., S.N. Londhe and K.C. Khare. 2012. Wave forecasts using wind information and genetic programming. Ocean Engineering, 54: 61-69. [
DOI:10.1016/j.oceaneng.2012.07.017]
21. Ozger, M. 2010. Significant wave height forecasting using wavelet fuzzy logic approach. Ocean Engineering, 37: 1443-1451. [
DOI:10.1016/j.oceaneng.2010.07.009]
22. Rifat, T.U.R., D.S. Pekpostalci, Ö.A., Küçükosmanoğlu and A. Küçükosmanoğlu. 2017. Prediction of significant wave height along konyaaltı coast. International Journal of Engineering and Applied Sciences, 9(4): 106-114. [
DOI:10.24107/ijeas.368922]
23. Savitha, R. and A. Al Mamun. 2017. Regional ocean wave height prediction using sequential learning neural networks. Ocean Engineering, 129: 605-612. [
DOI:10.1016/j.oceaneng.2016.10.033]
24. Takagi, T. and M. Sugeno. 1985. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man and Cybernetics, 15(1): 116-132. [
DOI:10.1109/TSMC.1985.6313399]
25. Yousefi, M., M. pajouhesh and A. honarbakhsh. 2020. Modeling trends land use changes local by using LCM model based on artificial neural networks and markov chain analysis (Case Study: BeheshtAbad Watershed). Journal of Watershed Management Research, 11(21): 129-142.
26. Zubier, K.M. 2020. Using an artificial neural network for wave height forecasting in the Red Sea.Indian Journal of Geo Marine Sciences, 49(02): 184-191.