1. Agyare, W.A., S.J. Park and P.L.G. Vlek. 2007. Artificial neural network estimation of saturated hydraulic conductivity. Vadose Zone Journal, 6: 423-431. [
DOI:10.2136/vzj2006.0131]
2. Ahmadi, A., P. Palizwanzand and H. Palizwanzand. 2017. Estimation of hydraulic conductivity of soil saturation using gene expression programming and ridge regression (Case study in East Azarbaijan province). Iranian Soil and Water Research, 48(5): 1087-1095 (In Persian).
3. Akhoni poorhoseini, F. and S. Darbandi. 2018. Modeling Sufi Chai River runoff using support vector machine and artificial neural network. Watershed management, 9(17): 57-66 (In Persian). [
DOI:10.29252/jwmr.9.17.57]
4. Anon. 2008. MATLAB software help manual. Version 7.6.0.2008b. The Math Works, Inc.
5. Bouma, J. 1989. Using soil survey data for quantitative land evaluation. Advances Soil Science, 9: 177-213. [
DOI:10.1007/978-1-4612-3532-3_4]
6. Debeljak, M. and S. Džeroski. 2011. Decision Trees in Ecological Modelling. In: Jopp, F., Reuter, H., Breckling, B. (eds), Modelling Complex Ecological Dynamics. (197-209). Springer, Berlin, Heidelberg [
DOI:10.1007/978-3-642-05029-9_14]
7. Farzadmehr, M., M. Dastoorani and M. Khashei siooki. 2018. Compare M5 Moldel and RBF model in saturation hydraulic conductivity. Water and Soil Conservation, 25(5): 167-183 (In Persian).
8. Foroughifar H., A.A. Jafarzadah, H. Torabi Gelsefidi, N. Aliasgharzadah, N. Toomanian and N. Davatgar. 2010. Spatial variations of surface soil physical and chemical properties on different landforms of Tabriz plain, Journal of Soil and Water Science, 21(3):1-21 (In Persian).
9. Gee, G.W. and D. Or. 2002. Particle-size analysis. In: Warren, A.D. Eds. Methods of Soil Analysis. Part 4. Physical Methods. (pp.255-295). Soil Science Society of America Journal. [
DOI:10.2136/sssabookser5.4.c12]
10. Gholami Sh., Hosseini S.M., Mohammadi J., and A.S. Mahini. 2011. Spatial variability of soil macrofauna biomass and soil properties in riparian forest of Karkhe river, Journal of Water and Soil, 25(2)248-257 (In Persian).
11. Haverkamp, R., F.J. Leij., C. Fuentes., A. Sciortino., and P.J. Ross. 2005. Soil water retention: I. Introduction of a shape index. Soil Science Society of America Journal. 69: 1881-1890. [
DOI:10.2136/sssaj2004.0225]
12. Hoseini, Y., and R, Sedghi.2015. Assesment and compar ANFIS system and MLP In Estimation Saturation hydraulic conductivity by texture soil. Applied Research in Engineering of Irrigation and Drainage Structures, 16 (65): 54-27 (In Persian).
13. Hoseini Somee, M.,Roshani, A., and I.,Zebah. 2020. Modeling Groundwater Level Changes Based on Artificial Intelligence Methods (Murray Study of Zaveh Plain). Watershed management, 11(21):223-234 (In Persian).
14. Jarvis, N. J., Zavattaro, L. K., Reynolds, W. D., Olsen, P. A., McGechan, M., Mecke, M., Mohanty, B., Leeds-Harrison, P. B. and D. Jacques.2002. Indirect estimation of near-saturated hydraulic conductivity from readily available soil information. Geoderma, 108: 1-17. [
DOI:10.1016/S0016-7061(01)00154-9]
15. Khalili Moghadam, B., Afioni, M., Jalalian, A., Abbaspour, K. and A. Dehghani. 2014. Application of regression methods and neural networks to estimate the saturated hydraulic conductivity of soil in Central Zagros region. Journal of Agricultural Science and Technology and Natural Resources, Soil and Water Sciences, 19(71):217-227 (In Persian). [
DOI:10.18869/acadpub.jstnar.19.71.217]
16. Khashei Siuki, A., Jalali Moakhar, V.R., Noferesti, A.M., and Y. Ramazani. 2015. Comparing nonparametric k-nearest neighbor technique with ANN model for predicting soil saturated hydraulic conductivity. Journal of Soil Management and Sustainable Production, 5(3): 81-95 (In Persian).
17. Lamorski K., Pachepsky Y., Slawinski C., and R.T. Walczak. 2008. Using support vector machines to develop pedotransfer functions for water retention of soils in Poland. Soil Science Society American Journal, 72: 1243-1247. [
DOI:10.2136/sssaj2007.0280N]
18. Momtaz H R , Jafarzadah AA , Torabi H , Oustan, Sh., Samadi, A., Davatgar, N., and R J. Gilkes. 2009. An assessment of the variation in soil properties within and between Landforms in Amol region, Iran. Geoderma, 149: 10-18. [
DOI:10.1016/j.geoderma.2008.11.016]
19. Moncada, M.P., D., Gabriels, and W.M. Cornelis. 2014. Data-driven analysis of soil quality indicators using limited data. Geoderma, 235: 271-278. [
DOI:10.1016/j.geoderma.2014.07.014]
20. Najibzadeh, N., K. Ghaderi, and M.M. Ahmadi. 2019. Utilization of support vector regression methods and artificial neural network in runoff precipitation modeling (Case study: Saffarud Dam catchment). Irrigation and Drainage of Iran, 6(13):1709-1720(In Persian).
21. Nelson, D. W. and L. E. Sommer. 1982.Total carbon, organic carbon, and organic matter. In: Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Tabatabai, M. A., Johnston, C. T., Sumner, M. E. Eds. Methods of soil analysis: part 3. Chemical and microbiological properties. American Society of Agronomy. pp. 539-579. [
DOI:10.2134/agronmonogr9.2.2ed.c29]
22. Nikbakht Shahbazi, A., b. Zahraei, and m. Naseri. 2012. Seasonal forecast of meteorological drought using support vector machines. Water and Wastewater, 2(23):73-85 (In Persian).
23. Nikpour, M.R., H., Thanikhani, S., Mahmoudi Babalan, and A. Mohammadi. 2017. Application of SVM, ANN, WNN and GEP models in rainfall-runoff simulation of Khiavachai River. Echo Hydrology, 627-639.(In Persian).
24. Noroozian Azizi, Z., M., Qajar Spanloo, M., Emadi, and F. Sadeghzadeh.2017. Evaluation of regression models and artificial neural network in estimating hydraulic conductivity of soil saturation in Mazandaran. Soil Research (Soil and Water Sciences), 31(1):76-88 (In Persian).
25. Norouzi Ghoshbalagh, H., A., Nadiri, A., Asghari Moghaddam, and m. Qarahkhani. 2018. Comparison of the efficiency of artificial neural networks, fuzzy logic and random forest in estimating the aquifer transfer capability of Malekan plain. Echo Hydrology, 5(3): 739-751 (In Persian).
26. Nosrati Karizak, F., S.A., Movahedi Naeni, and A. Hezarjaribi. 2012. Using Artificial Neural Networks to estimate saturated hydraulic conductivity from easily available soil properties. Journal of Soil Management and Sustainable Production, 2(1): 95-110 (In Persian)
27. Page, A. L., Miller, R. H., and D. R. Keeney. 1982. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, second ed. Agronomy Monographs, 9. ASA-SSA, Madison.
28. Rezaei Arshad, R, Sayadi, A., Mazlum, M., Sharfa, M. and A. Jafar Nejadi. 2012. Comparison of artificial neural network and regression methods to predict saturated hydraulic conductivity of soils in Khuzestan province. Water and Soil Science-Agricultural Science and Technology and Natural Resources, 16(60): 107-118 (In Persian)
29. Rhoads, J.D. 1986. Cation exchange capacity, In; A.C. Page (ed) Methods of soil Analysis, part 2, American Society of Agronomy, 9: 149-158.
30. Sajikumar, N. and B. S., Thandaveswara. 1999. A Nonlinear Rainfall-Runoff Model Using an Artificial Neural Network," Journal of Hydrology, 126(1): 32-55. [
DOI:10.1016/S0022-1694(98)00273-X]
31. Siasar, H. and t. Honar. 2019. Application of support vector machine models, chad and random forest in estimating daily reference transpiration evaporation in northern Sistan and Baluchestan province. Irrigation and Drainage of Iran, 2(13): 378-388 (In Persian).
32. Twarakavi N.K.C., J., Simunek, and M.G. Schaap 2009. Development of pedotransfer functions for estimation of soil hydraulic parameters using support vector machines. Soil Science Society of American Journal, 73: 1443-1452. [
DOI:10.2136/sssaj2008.0021]
33. Wang, Y., and I.H. Witten. 1997. Inducing model trees for continuous classes. In Proceedings of the Ninth European Conference on Machine Learning. Pp: 128-137.
34. Wosten, J.H.M., Ya.A. Pachepsky and W.J. Rawls. 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology, 251: 123-150. [
DOI:10.1016/S0022-1694(01)00464-4]