دوره 13، شماره 26 - ( پاییز و زمستان 1401 1401 )                   جلد 13 شماره 26 صفحات 242-230 | برگشت به فهرست نسخه ها

XML English Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zarei R, Khaledi Darvishan A. (2022). The Role of Surface Sealing on Sediment Concentration and Soil Loss in Laboratory Plots under Simulation of Subsequent Rainfalls. jwmr. 13(26), 230-242. doi:10.52547/jwmr.13.26.230
URL: http://jwmr.sanru.ac.ir/article-1-1188-fa.html
زارعی رضا، خالدی درویشان عبدالواحد. نقش اندوده سطحی در غلظت رسوب و هدررفت خاک از کرت‌های آزمایشگاهی تحت شبیه‌سازی باران های متوالی پ‍‍ژوهشنامه مديريت حوزه آبخيز 1401; 13 (26) :242-230 10.52547/jwmr.13.26.230

URL: http://jwmr.sanru.ac.ir/article-1-1188-fa.html

دانشگاه تربیت مدرس
چکیده:   (655 مشاهده)
چکیده مبسوط
مقدمه و هدف: خاک یکی از مهمترین سرمایه‌های ملی هر کشور محسوب می‌شود. از آنجایی که تاثیرات تخریب خاکدانه ­ها و تشکیل اندوده سطحی بر افزایش سیل­خیزی،کاهش حاصلخیزی خاک و افزایش میزان فرسایش موضوع مهمی است، لذا هدف پژوهش حاضر، بررسی نقش اندوده سطحی در غلظت رسوب و هدررفت خاک است.
مواد و روش‌ها: پژوهش حاضر در دو بافت خاک لومی-شنی و لومی-شنی-رسی تحت تاثیر سه توالی بارندگی با شدت‌های بارندگی 50 و 90 میلی‌متر در ساعت با فواصل 10 روز و به مدت 15 دقیقه در کرت‌های فرسایشی کوچک با ابعاد 0/5× 0/5 متر با شیب 18 درصد مورد بررسی قرار گرفت. همچنین برای اندازه‌گیری اندوده سطحی از دو  شاخص میانگین وزنی قطر خاک‌دانه‌های سطح خاک و اسکنر سه‌بعدی با دقت 20 میکرومتر استفاده شد.
یافته‌ها: نتایج نشان داد که توالی بارندگی بر غلظت رسوب و هدررفت خاک تاثیر معنی‌دار (0/01p) داشت. در اثر توالی بارندگی هدررفت خاک در بافت لومی-شنی در شدت‌ بارندگی 50 میلی‌متر در ساعت حدود 45 درصد افزایش یافت در حالی که در شدت بارندگی 90 میلی‌متر  در ساعت حدود 38 درصد کاهش یافت و در بافت لومی-شنی-رسی به­ترتیب در شدت های بارندگی 50 و 90 میلی‌متر در ساعت هدررفت خاک به ترتیب 5 و 67 درصد کاهش یافت. میزان غلظت رسوب نیز بعد از توالی‌های بارندگی کاهش یافت. نتایج اندازه‌گیری هدررفت خاک نشان داد که از بارندگی اول تا بارندگی سوم جز در بافت لومی-شنی در شدت بارندگی 50 میلی‌متر در ساعت، در هر دو خاک ، میزان رسوب خروجی کاهش یافت. نتایج حاصل از اسکنر سه‌بعدی در شدت بارندگی 50 میلی‌متر در ساعت نشان داد زبری سطح خاک در بافت لومی-شنی از 1/30 به 1/18 میلی‌متر و در بافت لومی-شنی-رسی از 1/80 به 1/31 کاهش یافت، اما در شدت بارندگی 90 میلی‌متر در ساعت میزان زبری افزایش یافت و از تشکیل اندوده سطحی جلوگیری گرد.
نتیجه‌گیری: زبری سطح خاک و اندوده سطحی حاصل از بارندگی قبلی قادر است شرایط سطح خاک و رواناب و هدررفت خاک را در مقیاس کرت تغییر دهد و شدت این تغییرات تحت تاثیرات متقابل شدت بارندگی و بافت خاک می‌باشد.

متن کامل [PDF 2241 kb]   (297 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: فرسايش خاک و توليد رسوب
دریافت: 1400/12/22 | ویرایش نهایی: 1401/11/5 | پذیرش: 1401/8/17 | انتشار: 1401/11/5

فهرست منابع
1. Adesodun, J.K., J.S.C. Mbagwu and N. Oti. 2005. Distribution of carbon, nitrogen and phosphorus in water-stable aggregates of an organic waste amended Ultisol in southern Nigeria. Bioresource Technology, 96(4): 509-516. [DOI:10.1016/j.biortech.2004.05.001]
2. Agassi, M. and J. M. Bradford. 1999. Methodologies for interrill soil erosion studies. Soil and Tillage Research, 49(4): 277-287. [DOI:10.1016/S0167-1987(98)00182-2]
3. Asadi, H., S.H. Mahammodi and A. Heidari. 2007. Effect of surface sealing on sheet dynamic. Proceedings of the 12th Soil Science Conference of Iran, 1148-1149, Karaj, Iran (In Persian).
4. Assouline, S. and M. Ben-Hur. 2006. Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. Catena, 66(3): 211-220. [DOI:10.1016/j.catena.2006.02.005]
5. Baihua, F., T.H. Lachlan and C.E. Newham. 2010. A review of surface erosion and sediment delivery models for unsealed roads. Environmental Modelling & Software, 25(1): 1-14. [DOI:10.1016/j.envsoft.2009.07.013]
6. Cantón, Y., A. Solé-Benet and C. Asensio. 2009. Aggregate stability in range sandy loam soils relationships with runoff and erosion. Catena, 77(3): 192-199. [DOI:10.1016/j.catena.2008.12.011]
7. Chang, W.J. and D.J. Hills. 1993. Sprinkler droplet effects on infiltration. II: laboratory study. Journal of Irrigation and Drainage Engineering, 119(1): 157-169. [DOI:10.1061/(ASCE)0733-9437(1993)119:1(157)]
8. Cheng, Q. and W. Ma. Q. Cai. 2008: The Relative importance of soil crust and slope angle in runoff and soil loss: a case study in the hilly areas of the loess plateau, north china. GeoJournal, 71(2-3): 117-125. [DOI:10.1007/s10708-008-9149-5]
9. Darboux, F., P. Davy, C. Gascuel-Odoux and C. Huang. 2002. Evolution of soil surface roughness and flowpath connectivity in overland flow experiments. Catena, 46(2): 125-139. [DOI:10.1016/S0341-8162(01)00162-X]
10. Defersha, M.B. and A.M. Melesse. 2012. Effect of rainfall intensity, slope and antecedent moisture content on sediment concentration and sediment enrichment ratio. Catena, 90: 47-52. [DOI:10.1016/j.catena.2011.11.002]
11. Erpul, G. and M. R. Canga. 1999. Effect of Subsequent Simulated Rainfalls on Runoff and Erosion, Turkish Journal of Agriculture and Forestry, 23(6): 65-666.
12. Eslami, S. and A. Vaezi. 2015. Investigation of runoff and sediment production under the same rainfall events in agricultural soil with different aggregate size. Journal of Water and Soil, 29(6): 150- 160 (In Persian).
13. Fernández-Raga, M., R. Fraile, J.J. Keizer, M.E.V. Teijeiro and R.L.D. Marques. 2010. The kinetic energy of rain measured with an optical disdrometer: An application to splash erosion. Atmospheric Research, 96(2): 225-240. [DOI:10.1016/j.atmosres.2009.07.013]
14. Flanagan, D.C., K. Chaudhari and L.D. Norton. 2002. Polyacrylamide soil amendment effects on runoff and sediment yield on steep slopes: Part II. Natural rainfall conditions. Transactions of the ASAE, 45(5): 1339-1351. [DOI:10.13031/2013.11071]
15. Gholami, R. and S.H.R. Sadeghi. 2011. Effect of mild fire on infiltration, runoff and rangeland sedimentation in Kodir region. Watershed Management of Iran, 5(17): 23-32 (In Persian).
16. Hasan‌ Zadeh, H., A.R. Vaezi and M.H. Mohammadi. 2013. Runoff changes in plot dimensions in specimens with different textures under the same events simulated rain. Iranian Soil and Water Research, 44(3): 243- 253 (In Persian).
17. Hekmat, H. 2012. Optical three-dimensional measuring devices technology and its application. Manufacturing and Production Magazine, 34: 96-99.
18. Herrick, J.E., W.G. Whitford, A.G. De. Soyza, J.W. Van Zee, K.M. Havstad and C.A. Seybold. 2001. Field soil aggregate stability kit for soil quality and raneland health evaluations. Catena, 44(1): 27-35. [DOI:10.1016/S0341-8162(00)00173-9]
19. Huang, J. and X. Zhao. 2013. Effects of rainfall intensity, underlying surface and slope gradient on soil infiltration under simulated rainfall experiments. Catena, 104: 93-102. [DOI:10.1016/j.catena.2012.10.013]
20. Karimi, H., M. Sofi, H. Hagh nia and R. Khorasani. 2005. Investigation of aggregate stability and soil erosion potential in loamy and sandy loam soils (Case study of Lamerd plain, Fars province). Agricultural Sciences and Natural Resources, 14(6): 11-20 (In Persian).
21. Khaledi Darvishan, A., V. Homayounfar and S.H.R. Sadeghi. 2016. The Impact of standard preparation practice on the runoff and soil erosion rates under laboratory conditions. Solid Earth, 7: 1293-1302. [DOI:10.5194/se-7-1293-2016]
22. Khaledi Darvishan, A., H. Sadeghi and M. Homaee. 2014. Influence of start time and runoff coefficient on rainfall intensity and previous soil moisture in laboratory plots. Iranian Water Research, 8(15): 41-49 (In Persian).
23. Kukal, S.S. and M. Sarkar. 2011. Laboratory simulation studies on splash erosion and crusting in relation to surface roughness and raindrop size. Journal of the Indian Society of Soil Science, 59(1): 87-93.
24. Kukal, S.S. and M. Sarkar. 2010. Splash erosion and infiltration in relation to mulching and polyviny1 alcohol application in Semi-Arid Tropics. Archives of Agronomy and Soil Science, 56(6): 697-705. [DOI:10.1080/03650340903208871]
25. Le Bissonnais, Y., A. Bruand and M. Jamagne. 1989. Laboratory experimental study of soil crusting: Relation between aggregate breakdown mechanisms and crust stucture. Catena, 16(4): 377-392. [DOI:10.1016/0341-8162(89)90022-2]
26. Marques, M.J., S. García‐Muñoz, G. Muñoz‐Organero and R. Bienes. 2010. Soil conservation beneath grass cover in hillside vineyards under mediterranean climatic conditions (Madrid, Spain). Land Degradation & Development, 21(2): 122-131. [DOI:10.1002/ldr.915]
27. Merz, R., G. Blöschl and J. Parajka. 2006. Spatio-temporal variability of event runoff coefficients. Journal of Hydrology, 331(3): 591-604. [DOI:10.1016/j.jhydrol.2006.06.008]
28. Nosetto, M.D., E.G. Jobby and J.M. Paruelo. 2006. Carbon sequestration in semi-arid rangelands arid enviroment rangelands: comparison of pinus ponderosa plantation and grazing exclusion in NW Patagonia. Journal of Arid Environment, 67(1): 142-156. [DOI:10.1016/j.jaridenv.2005.12.008]
29. Peyvaste, F., H. Asadi and M. Akef. 2010. Relationship between aggregate stability and surface sediment formation and its effect on soil erosion in laboratory conditions. Iranian Watershed Management Science and Engineering, 4(10): 8-18 (In Persian).
30. Poesen, J. 1984. The Influence of slope angle on infiltration rate and hortonian overland flow. Zeitschrift für Geomorpholgie, Supplement Band, 49: 117-131.
31. Pulido Moncada, M., D. Gabriels, D. Lobo, K. DeBeuf, R. Figueroa and W.M. Cornelis. 2014. A comparison of methods to assess susceptibility to soil sealing. Geoderma, 226-227: 397-404. [DOI:10.1016/j.geoderma.2014.03.014]
32. Putjaroon. W. and K. Pongboon. 1987. Amount of runoff and soil losses from various land-use sampling plots in sakolnakorn province, Thailand. Forest Hydrology and Watershed Management-Hydrologie Forestiere et Amenagement des Bassins Hydrologiques (Proceedings of the Vancouver Symposium) IAHS-AISH, Publication, 167: 231-238.
33. Quine, T.A., G. Govers, D.E. Walling, X. Zhang, P.J. Desmet, Y. Zhang and K. Vandaele. 1997. Erosion processes and landform evolution on agricultural land-new perspectives from caesium‐137 measurements and topographic‐based erosion modelling. Journal of the British Geomorphological Group, 22(9): 799-816. https://doi.org/10.1002/(SICI)1096-9837(199709)22:9<799::AID-ESP765>3.0.CO;2-R [DOI:10.1002/(SICI)1096-9837(199709)22:93.0.CO;2-R]
34. Ramos, M., C.E. Pareja‐Sánchez., D. Plaza‐Bonilla, C. Cantero‐Martínez and J. Lampurlanés. 2019. Soil sealing and soil water content under no‐tillage and conventional tillage in irrigated corn: Effects on grain yield. Hydrological Processes, 33(15): 2095-2109. [DOI:10.1002/hyp.13457]
35. Ramos, M.C., S. Nacci and I. Pla. 2000. Soil sealing and its influence on erosion rates for some soils in the mediterranean area. Soil Science, 165(5): 398-403. [DOI:10.1097/00010694-200005000-00003]
36. Razali, N.M. and Y. Wah. 2011. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of Statistical Modeling and Analytics, 2(1): 21-33.
37. Refahi, H. 2007. Water erosion and its control. 5th ed., University of Tehran Press, Tehran, Iran, 671 pp (In Persian).
38. Rodrigo Comino, J., T. Iserloh, T. Lassu, A. Cerdà, S.D. Keestra, M. Prosdocimi, C. Brings, M. Marzen, M.C. Ramos, J.M. Senciales and J.R. Sinoga. 2016. Quantitative comparison of initial soil erosion processes and runoff generation in spanish and german vineyards. Science of the Total Environment, 565: 1165-1174. [DOI:10.1016/j.scitotenv.2016.05.163]
39. Sadeghi, S.H.R., L. Gholami, E. Sharifi Moghadam and A. Khaledi Darvishan. 2014. Scale effect on runoff and soil loss control using rice straw mulch under laboratory conditions. Solid Earth, 6: 2915-2938 (In Persian). [DOI:10.5194/sed-6-2915-2014]
40. Sadeghi, S.H.R., E.S. Sharifi Moghadam and A. Khaledi Darvishan. 2016. Effects of subsequent rainfall events on runoff and soil erosion components from small plots treated by vinasse. Catena, 138: 1-12. [DOI:10.1016/j.catena.2015.11.007]
41. Seyfi, M., M. Neyshabori and H. Rohi pour. 2014. Investigation of the effect of soil surface coating on runoff and inter-furrow erosion using rain simulator. Iranian Watershed Management Science and Engineering, 23(7): 1-8 (In Persian).
42. Seyfi, M., M. Neyshabori, H. Rohipour and A. Ahmadi. 2014. Effect of surface coating on erosion of furrow substrate in slope and intensity of different rainfall in laboratory conditions. Water and Soil Research, 24(1): 55-66 (In Persian).
43. Shahbazi, A., F. Sarmadian, H. Refahi and M. Gorgi. 2005. Effect of polyacrylamide on saline sodium soils. Iranian Agricultural Sciences, 36(5): 1103-1112 (In Persian).
44. Shekofte, H., H. Refahi and M. Gorgi. 2005. Investigation of the effect of polyacrylamide chemical on soil erosion and runoff, Iranian Agricultural Sciences, 36(1): 177-186 (In Persian).
45. Six, J., K. Paustian, E.T. Elliott and C. Combrink. 2000. Soil structure and organic matter. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Science Society of America Journal, 64(2): 681-689. [DOI:10.2136/sssaj2000.642681x]
46. Vaezi, A.R. and H. Hasanzade. 2016. Temporal changes in runoff production and soil loss under rain Simulated. Proceedings of the 12th Iranian Soil Science Conference, 225-232 pp., Tabriz, Iran (In Persian).
47. Vaezi, A.R., H. Bayat and S. Rahmati. 2017. Analysis of the effect of successive showers on soil properties, surface runoff production and soil loss in Soils with different stability in small plots. Journal of Soil and Water Resources Protection, 7(2): 53-68 (In Persian).
48. Vaezi, A.R., H. Hasanzadeh and A. Cerdà. 2016. Developing an erodibility triangle for soil textures in semi-arid regions, NW Iran. Catena, 142: 221-232. [DOI:10.1016/j.catena.2016.03.015]
49. Vahabi, J. and D. Nikkami. 2008. Assessing dominant factors affecting soil erosion using a portable rainfall simulator. International Journal of Sediment Research, 23(4): 376-386 (In Persian). [DOI:10.1016/S1001-6279(09)60008-1]
50. Valette, G., S. Prévost, L. Lucas and J. Léonard. 2006. SoDA Project: A Simulation of soil surface degradation by rainfall. Computers and Graphics, 30(4): 494-506. [DOI:10.1016/j.cag.2006.03.016]
51. Walling. D.E., A.L. Collins, H.A. Sichinabula and G.J. Leeks. 2001. Integrated assessment of catchment suspended sediment budgets. Land Deggradation and Development, 12(5): 387-415. [DOI:10.1002/ldr.461]
52. Wang, P.K. and H.P. Pruppacher. 1977. Acceleration to terminal velocity of cloud and raindrops. Journal of Applied Meteorology, 16(3): 275-280. https://doi.org/10.1175/1520-0450(1977)016<0275:ATTVOC>2.0.CO;2 [DOI:10.1175/1520-0450(1977)0162.0.CO;2]
53. Wen-Tai, Z.H., Y. Dong-Sheng, S. Xue-Zheng, T. Man-Zhi and L. Liu-Song. 2010. Variation of sediment concentration and its drivers under different soil management systems. Pedospher, 20(5): 578-585. [DOI:10.1016/S1002-0160(10)60047-1]
54. Yan F.L., Z.H. Shi, Z.X. Li and C.F. Cai. 2008. Estimating interrill soil erosion from aggregate stability of ultisols in subtropical China. Soil and Tillage Research, 100(1): 34-41. [DOI:10.1016/j.still.2008.04.006]
55. Zarrin kafsh, M. 1992. Evaluation and morphology and quantitative analysis of soil, water and plants, Applied Soil Science. 2nd ed, University of Tehran Press, Tehran, Iran, 345 pp.
56. Zhao, L., X. Liang and F. Wu. 2014. Soil surface roughness change and its effect on runoff and erosion on the loess plateau of China. Journal of Arid Land, 6(4): 400-409. [DOI:10.1007/s40333-013-0246-z]
57. Zheng, F.L. 2005. Effects of accelerated soil erosion on soil nutrient loss after deforestation on the loess plateau. Pedosphere, 15(6): 707-715.

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:

ارسال پیام به نویسنده مسئول

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2023 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb