دوره 14، شماره 27 - ( بهار و تابستان 1402 )                   جلد 14 شماره 27 صفحات 62-52 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Fazloula R, Pouryazdankhah H. (2023). Investigation the Citrus Yield Reduction Affected by Groundwater Salinity in Mazandaran Province. J Watershed Manage Res. 14(27), 52-62. doi:10.61186/jwmr.14.27.52
URL: http://jwmr.sanru.ac.ir/article-1-1191-fa.html
فضل‌اولی رامین، پوریزدان‌خواه هدیه. بررسی اثر شوری آب‌های زیرزمینی بر کاهش عملکرد مرکبات در استان مازندران پ‍‍ژوهشنامه مديريت حوزه آبخيز 1402; 14 (27) :62-52 10.61186/jwmr.14.27.52

URL: http://jwmr.sanru.ac.ir/article-1-1191-fa.html


1- دانشگاه علوم کشاورزی و منابع طبیعی ساری
چکیده:   (2209 مشاهده)

چکیده مبسوط
مقدمه و هدف: شوری آب آبیاری یکی از مهم‌ترین عوامل در کاهش محصولات کشاورزی است. استان مازندران یکی از مهم‌ترین مناطق در زمینه‌ی تولید مرکبات در ایران است که بخشی از باغ‌های مرکبات آن با آب‌های زیرزمینی آبیاری می‌شوند. بنابراین این تحقیق، با هدف بررسی شوری (EC) آب‌های زیرزمینی در استان مازندران و تأثیر آن بر عملکرد مرکبات انجام شد. برای این منظور، داده‌های شوری مربوط به 300 حلقه چاه مربوط به شرکت آب منطقه ­ای استان مازندران، هم به‌صورت مکانی و هم به‌صورت زمانی در نوار ساحلی استان مازندران به مساحت 8252 کیلومترمربع در مدت 9 سال متوالی و طی دوره ­های شش ماهه، با استفاده از نرم ­افزار ArcGIS 10.7.1 پهنه­ بندی ­شدند.
مواد و روش ­ها: نقشه­‌های شوری با روش کریجینگ معمولی (OK) و با استفاده از میانگین شوری در دوره‌ها­ی شش­ ماهه از ابتدای سال  1391تا پایان سال 1399، با استفاده از نرم ­افزار ArcGIS 10.7.1 به ­دست آمد. براساس رابطه ارائه شده برای کاهش عملکرد نسبت به شوری ((4/1-EC)100-13=Y)، به­ ترتیب شوری­ های 1/40، 2/17، 2/94 و 3/71 dS/m برای حصول عملکردهای برابر 100، 90، 80 و 70 درصد، در نظر گرفته شد. بر این اساس، مساحت تحت عملکردهای 100%، 90-100%، 80-90% و 70%> به‌دست آمد. آزمون من-کندال و تخمین­گر شیب سِن نیز برای پیش­ بینی تغییرات در سال­های آتی استفاده شد.
یافته ­ها: نقشه‌های EC پهنه‌بندی شده نشان دادند که شوری آب‌های زیرزمینی از غرب به شرق استان، افزایش می ­یابد. براساس آزمون من-کندال، روند تغییرات زمانی معنی ­داری برای مساحت­ های تحت عملکرد <70% (3/71EC>) و عملکرد 100% (1/40EC<) به‌دست آمد، که نشان می‌دهد شوری آب‌های زیرزمینی می­تواند برای باغ‌های مرکبات نوار ساحلی استان مازندران نگران­ کننده باشد. براساس معادله حاصل از تخمین­گر شیب سِن، برآورد شد که چنانچه این روند ادامه یابد، از سال 1400 مساحت تحت عملکرد 100% به صفر خواهد رسید و حداکثر تا سال 1426، بازده تولید مرکبات در نوار ساحلی، به زیر 70 درصد خواهد رسید.

نتیجه ­گیری: نتایج این تحقیق نشان داد که شوری آب‌های زیرزمینی در قسمت شرقی با گذشت زمان بیش‌تر شده و سطح وسیع ­تری را در اطراف تالاب میان کاله در بر می­ گیرد که احتمالا می ­تواند به­ دلیل نشت آلودگی تالاب به سفره آب‌های زیرزمینی آن محدوده باشد. کاهش کیفیت آب­ های زیرزمینی در طی زمان، می­ تواند ناشی از دو عامل کاهش بارندگی در سال­های اخیر و حفر چاه­ های غیرمجاز و متعاقباً برداشت بی­ رویه از چاه­ های منطقه دانست. در کل، پیشنهاد می­ شود که آب‌های زیرزمینی در این منطقه به­ صورت کاملاً کنترل شده، مورد بهره ­برداری قرار گیرد تا از کاهش روند کیفی آن جلوگیری شود.

 

متن کامل [PDF 1840 kb]   (421 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مديريت حوزه های آبخيز
دریافت: 1401/1/4 | پذیرش: 1401/5/10

فهرست منابع
1. Agriculture Organization. 2006. The state of food and agriculture, food aid for food security? Food & Agriculture Organization. 37.
2. Amiri-Bourkhani, M., M.R. Khaledian, A. Ashrafzadeh and A. Shahnazari. 2017. The temporal and spatial variations in groundwater salinity in Mazandaran Plain, Iran, during a long-term period of 26 years. Geofizika, 34(1): 119-139. https://doi.org/10.15233/gfz.2017.34.4 [DOI:10.15233/gfz.2017.34.4.]
3. Aparicio-Durán, L., A. Hervalejo, R. Calero-Velázquez, J.M. Arjona-López and F.J. Arenas-Arenas. 2021. Salinity effect on plant physiological and nutritional parameters of new Huanglongbing disease tolerant citrus rootstocks. Agronomy, 11(4): 653(1-16). https://doi.org/10.3390/agronomy11040653 [DOI:10.3390/agronomy11040653.]
4. Arslan, H. 2012. Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: The case of Bafra Plain, Turkey. Agricultural Water Management, 113: 57-63. https://doi.org/10.1016/j.agwat.2012.06.015 [DOI:10.1016/j.agwat.2012.06.015.]
5. Asoka, A., T. Gleeson, Y. Wada and V. Mishra. 2017. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nature Geoscience, 10(2): 109-117. https://doi.org/10.1038/ngeo2869 [DOI:10.1038/ngeo2869.]
6. Asghari, F.B., A.A. Mohammadi, M.H. Dehghani and M. Yousefi. 2018. Data on assessment of groundwater quality with application of ArcGIS in Zanjan, Iran. Data in Brief, 18: 375-379. [DOI:10.1016/j.dib.2018.03.059]
7. Azma, A., E. Narreie, A. Shojaaddini, N. Kianfar, R. Kiyanfar, S.M. Seyed Alizadeh and A. Davarpanah. 2021. Statistical modeling for spatial groundwater potential map based on GIS technique. Sustainability, 13(7): 3788. [DOI:10.3390/su13073788]
8. Belkhiri, L., A. Tiri and L. Mouni. 2020. Spatial distribution of the groundwater quality using kriging and Co-kriging interpolations. Groundwater for Sustainable Development, (11): 100473(1-9). https://doi.org/10.1016/j.gsd.2020.100473 [DOI:10.1016/J.GSD.2020.100473]
9. Bradaï, A., A. Douaoui, N. Bettahar and I. Yahiaoui. 2016. Improving the prediction accuracy of groundwater salinity mapping using indicator kriging method. Journal of Irrigation and Drainage Engineering, 142(7): 04016023. [DOI:10.1061/(ASCE)IR.1943-4774.0001019]
10. Brito, M.E.B., P.D. Fernandes, H.R. Gheyi, L.A.D.A. Soares, W.D.S. Soares and J.F. Suassuna. 2020. Screening of citrus scion-rootstock combinations for tolerance to water salinity during seedling formation. Acta Scientiarum. Agronomy, 43. https://doi.org/10.4025/actasciagron.v43i1.48163 [DOI:10.4025/actasciagron.v43i1.48163.]
11. Cambardella, C.A., T.B. Moorman, T.B. Parkin, D.L. Karlen, J.M. Novak, R.F. Turco and A.E. Konopka. 1994. Field- scale variability of soil properties in Central Iowa soils. Soil Science Society of America Journal, 58(5): 1501. https://doi.org/10.2136/sssaj1994.03615995005800050033x [DOI:10.2136/sssaj1994.03615995005800050033x.]
12. Dashti, S., Gh.R. Sabzghabaei, K. Jafarzadeh and M. Bazmara Baleshti. 2020. The role of landscape ecology spatial structure analysis in environmental impact assessments (EIA) (Case study: Miankaleh international wetland). Journal of Environmental Science and Technology, 22(2): 93-105 (In Persian).
13. Da Silva Sa, F.V., M.E.B. Brito, L. de Andrade Silva, R.C.L. Moreira, P.D. Fernandes and L.C. de Figueiredo. 2015. Physiology of perception of saline stress in'Common Sunki'mandarin hybrids under saline hydroponic solution/Fisiologia da percepcao do estresse salino em hibridos de tangerineira" Sunki Comum" sob solucao hidroponica salinizada. Comunicata Scientiae, 6(4): 463-471. https://doi.org/10.14295/cs.v6i4.1121 [DOI:10.14295/cs.v6i4.1121.]
14. Delbari, M., P. Afrasiab and S.R. Miremadi. 2011. Spatio-temporal variability analysis of groundwater salinity and depth (Case study: Mazandaran province). Iranian Journal of Irrigation and Drainage, 3(4): 359-374 (In Persian).
15. Ghadami Firouzabadi, A. 2015. The water use management and soil changes by full irrigation and partial rootzone drying (PRD) in sunflower. Ph.D. Thesis, Sari Agricultural Sciences and Natural Resources University, Sari, Iran, 174 pp (In Persian).
16. Gholami, V., A. Khalili, H. Sahour, M.R. Khaleghi and E.N. Tehrani. 2020. Assessment of environmental water requirement for rivers of the Miankaleh wetland drainage basin. Applied Water Science, 10: 233. https://doi.org/10.1007/s13201-020-01319-8 [DOI:10.1007/s13201-020-01319-8.]
17. Grieve, A.M., L.D. Prior and K.B. Bevington. 2007. Long-term effects of saline irrigation water on growth, yield, and fruit quality of 'Valencia'orange trees. Australian Journal of Agricultural Research, 58(4): 342-348. https://doi.org/10.1071/AR06199 [DOI:10.1071/AR06199.]
18. Hosseini, S.S. and H. Rafiei. 2008. Investigation of citrus market behavior in Mazandaran province, case study of Sari. Agricultural Economics, 2(4): 73-92 (In Persian).
19. Iran Press. 2020. Iran, the fifth citrus producing country in the world. Iran press news Agency, News Cod: 185752, date: 2020.5.27 (Page address: https://farsi.iranpress.com/iran-i185752) (In Persian)
20. IRNA. 2021. 10 million cubic meters are extracted annually from illegal wells in Mazandaran. The Islamic Republic News Agency, News Cod: 84206632, Reporter Code: 1045, date: 2021.02.01 (Page address: https://www.irna.ir/news/84206632) (In Persian).
21. Johnston, K., J.M. Ver Hoef, K. Krivoruchko and N. Lucas. 2001. Using ArcGIS geostatistical analyst, Vol (380). ESRI Redlands, 273 pp.
22. Karandish, F. and A. Shahnazari. 2014. Appraisal of the geostatistical methods to estimate Mazandaran coastal ground water quality. Caspian Journal of Environmental Sciences, 12(1): 129-146.
23. Kendall, M.G. 1975. Rank Correlation Methods: Griffin, London, UK. https://doi.org/10.4236/ojs.2016.66082 [DOI:10.4236/ojs.2016.66082.]
24. Khalid, M.F., S. Hussain, M.A. Anjum, S. Ahmad, M.A. Ali, S. Ejaz and R. Morillon. 2020. Better salinity tolerance in tetraploid vs diploid volkamer lemon seedlings is associated with robust antioxidant and osmotic adjustment mechanisms. Journal of Plant Physiology, 244: 153071. https://doi.org/10.1016/j.jplph.2019.153071 [DOI:10.1016/j.jplph.2019.153071.]
25. Lee, J.J., C.S. Jang, S.W. Wang and C.W. Liu. 2007. Evaluation of potential health risk of arsenic affected ground- water using indicator kriging and dose response model. Science of the Total Environment, 384(1-3): 151-162. https://doi.org/10.1016/j.scitotenv.2007.06.021 [DOI:10.1016/j.scitotenv.2007.06.021.]
26. Mann, H.B. 1945. Nonparametric tests against trend. Journal of the Econometric Society: 245-259. http://dx.doi.org/10.2307/1907187. [DOI:10.2307/1907187]
27. Maas, E.V. 1993. Salinity and citriculture. Tree Physiology, 12(2): 195-216. https://doi.org/10.1093/treephys/12.2.195 [DOI:10.1093/treephys/12.2.195.]
28. Mahmoud, L.M. M. Dutt, C.I. Vincent and J.W. Grosser. 2020. Salinity-induced physiological responses of three putative salt tolerant citrus rootstocks. Horticulturae, 6(4): 90. https://doi.org/10.3390/horticulturae6040090 [DOI:10.3390/horticulturae6040090.]
29. Mejri, S., A. Chekirbene, M. Tsujimura, M. Boughdiri and A. Mlayah. 2018. Tracing groundwater salinization pro- cesses in an inland aquifer: a hydrogeochemical and isotopic approach in Sminja aquifer (Zaghouan, northeast of Tunisia). Journal of African Earth Sciences, 147: 511-522. https://doi.org/10.1016/j.jafrearsci.2018.07.009 [DOI:10.1016/j.jafrearsci.2018.07.009.]
30. Mishra, U., R. Lal, B. Slater, F. Calhoun, D. Liu and M. Van Meirvenne. 2009. Predicting soil organic carbon stock using profile depth distribution functions and ordinary kriging. Soil Science Society of America Journal, 73(2): 614-621. https://doi.org/10.2136/sssaj2007.0410 [DOI:10.2136/sssaj2007.0410.]
31. Murkute, A.A., S. Sharma and S.K. Singh. 2005. Citrus in terms of soil and water salinity: a review. Journal of Scientific and Industrial Research, 64: 393-402.
32. Omrani, S.J., M. Almasian, M. Poshtekohi and R. Asa′di. 2003. Geological atlas (National atlas of Iran). National cartographic center (Plan and budget organization), 110 pp (In Persian).
33. Ostad-Ali-Askari, K. and M. Shayannejad. 2021. Quantity and quality modelling of groundwater to manage water resources in Isfahan-Borkhar Aquifer. Environment, Development and Sustainability:1-17. https://doi.org/10.1007/s10668-021-01323-1 [DOI:10.1007/s10668-021-01323-1.]
34. Pars Ab Tadbir, N.E.S.P. (Pvt) L. 2005. Northern cities water supply and snatiation project: environmental assessment (Vol. 3): Environmental assessment - Rasht and Anzali (English). Iran. Retrieved from http://documents.worldbank.org/curated/en/758121468044098835/Environmental-assessment-Rasht-and -Anzali.
35. Pouryazdankhah, H., A. Shahnazari, M.Z. Ahmadi, M. Khaledian and M.N. Andersen. 2019. Rice yield estimation based on forecasting the future condition of groundwater salinity in the Caspian coastal strip of Guilan Province, Iran. Environmental Monitoring and Assessment, 191(8): 1-16. https://doi.org/10.1007/s10661-019-7613-y [DOI:10.1007/s10661-019-7613-y.]
36. Robati, M. and E. Ghazanchaei. 2019. Socioeconomic and environmental situation analysis of Mazandaran province with conceptual model approach DPSIR. Human and Environment, 50: 81-99 (In Persian).
37. Said, A.A., R. Yurtal, M. Cetin and M.S. Gölpinar. 2021. Evaluation of some groundwater quality parameters using geostatistics in the urban coastal aquifer of Bosaso plain, Somalia. Journal of Agricultural Sciences, 27(1): 88-97. https://doi.org/10.15832/ankutbd.611787 [DOI:10.15832/ankutbd.611787.]
38. Salehi, S. and Z. Pazokinejad. 2021. Adaption of villagers to climate change and its relationship with social factors case study: Villagers of Babolsar city, Mazandaran province. Strategic Research on Social Problems in Iran University of Isfahan, 10(1): 47-70 (In Persian).
39. Sales, G.N.B., L. de Andrade Silva, J.F. Almeida, R.G. Nobre, F.B. da Costa, M.E.B. Brito, M.S. da Silva, A.X.M. de Queiroga, A.M. do Nascimento, J.L. da Silva and 1p.D. Fernandes. 2018. Quality of fruits from grafted Tahiti Lime (Citrus latifolia Tan) irrigated with waters of different salinities. Journal of Experimental Agriculture International: 1-10. [DOI:10.9734/JEAI/2018/44302]
40. Shahbazi, A. and A. Esmaeili-Sari. 2009. Groundwater quality assessment in north of Iran: a case study of Mazandaran province. World Applied Sciences Journal (Special Issue of Environment): 92-97. https://doi.org/10.4236/oje.2017.713044 [DOI:10.4236/oje.2017.713044.]
41. Sen, P.K. 1968. Estimates of the regression coefficient based on Kendall's Tau. Journal of the American Statistical Association, 63(324): 1379-1389. http://dx.doi.org/10.1080/01621459.1968.10480934. [DOI:10.1080/01621459.1968.10480934]
42. Soleimani, K. 2020. Empty aquifers in Mazandaran
43. Salinity of green plains. Talilbazaar news. News Cod: 25367, date: 2020.06.22 (Page address: https://www.tahlilbazaar.com/news/25367) (In Persian).
44. Theil, H. 1992. A rank-invariant method of linear and polynomial regression analysis. In: B. Raj and J. Koerts (eds.) Henri Theil's Contributions to Economics and Econometrics. (23): pp 345-381., Springer, Netherlands. https://doi.org/10.1007/978-94-011-2546-8_20 [DOI:10.1007/978-94-011-2546-8_20.]
45. Yang, F., S. Cao, X. Liu and K. Yang. 2008. Design of ground water level monitoring network with ordinary kriging. Journal of Hydrodynamics, 20(3): 339-346. https://doi.org/10.1016/S1001-6058(08)60066-9 [DOI:10.1016/S1001-6058(08)60066-9.]
46. Yidana, S.M., B. Banoeng-Yakubo and T.M. Akabzaa. 2010. Analysis of groundwater quality using multivariate and spatial analyses in the Keta basin, Ghana. Journal of African Earth Sciences, 58(2): 220-234. https://doi.org/10.1016/j.jafrearsci.2010.03.003 [DOI:10.1016/j.jafrearsci.2010.03.003.]
47. Ziogas, V., G. Tanou, G. Morianou and N. Kourgialas. 2021. Drought and salinity in viticulture: optimal practices to alleviate salinity and water stress. Agronomy, 11(7): 1283. https://doi.org/10.3390/agronomy11071283 [DOI:10.3390/agronomy11071283.]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb