1. Abedini, M. (2004). The role of major factors upon the generation and evolution of debris flows in South-Western range of Hadishahr-Dare Deez (North-West of Azarbaeejan). Geographical Research, 19(3), 193-212 (In Persian).
2. Ahmadi, H. (2012). Applied Geomorphology. Vol. 1 Water Erosion. 8th edn., Tehran university publishing institute, Tehran, Iran, 688 pp (In Persian).
3. Ahmadi, M. (2018). Evaluation of Morphometric Factors on the Distribution of Debris: A Case Study on the Attica Ripples on the South of Paveh- Kermanshah Province, Iran. Geography and Environmental Sustainability, 7(4), 35-51 (In Persian).
4. Baiz Sharif, H., Khaleghpanah, N., Davari, M., & Rahimzadeh, M. (2023). Investigating the performance of check dams in granularity of sedimentation in a watershed affected by debris flow (Nanor, Baneh). Journal of Water and Soil Conservation, 30(1), 111-130. https://doi.org/ 10.22069/JWSC.2023.21077.3621 (In Persian). [
DOI:10.22069/JWSC.2023.21077.3621 (In Persian).]
5. Bayati, K. M. (2007). Analysis and investigation on the role of topographical factors and river's dynamics on debris cone, case study: NW slopes of Sabalan MT (NW, Iran). Geographical Research, 39(60), 157-175 (In Persian).
6. Boelhouwers, J., Holness, S., & Sumner, P. (2000). Geomorphological characteristics of small debris flows on Junior's Kop, Marion Island, maritime sub‐Antarctic. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 25(4), 341-352.
https://doi.org/10.1002/(SICI)1096-9837(200004)25:4<341::AID-ESP58>3.0.CO;2-D [
DOI:10.1002/(SICI)1096-9837(200004)25:43.0.CO;2-D]
7. http://doi: 10.1002/(SICI)1096-9837(200004)25:4<341::AID-ESP58>3.0.CO;2-D
https://doi.org/10.1002/(SICI)1096-9837(200004)25:4<341::AID-ESP58>3.0.CO;2-D [
DOI:10.1002/(SICI)1096-9837(200004)25:43.0.CO;2-D]
8. Boromand, R., Behniafar, A. (2015). Zoning of the potential of domain instabilities with an emphasis on alluvial flows in the mountain basin of Sar Asiyab (Binalud zone). Geographical Sciences (Applied Geography), 11(23), 1-19 (In Persian).
9. Boromand, R., Zomorodian, M. (2014). Zoning of the potential of domain instabilities with an emphasis on alluvial flows in the mountain basin of Sar Asiyab (Binalud zone). Geographical Sciences (Applied Geography), 10(21), 1-15 (In Persian).
10. Curry, A. M. (2023). Talus slopes. Reference Module in Earth Systems and Environmental Sciences. http://doi.org/10.1016/B978-0-323-99931-1.00047-7 [
DOI:10.1016/B978-0-323-99931-1.00047-7]
11. Dowling, C. A., & Santi, P. M. (2014). Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011. Natural hazards, 71(1), 203-227. http://doi.org/10.1007/s11069-013-0907-4 [
DOI:10.1007/s11069-013-0907-4]
12. Gomez, C., Hotta, N., Shinohara, Y., Park, J. H., Tsunetaka, H., Zhang, M., ... & Yoshida, M. (2023). Formation Processes of Gully-side Debris-Cones Determined from Ground-Penetrating Radar (Mt. Unzen, Japan). Journal of Applied Geophysics, 209, 104919. [
DOI:10.1016/j.jappgeo.2022.104919]
14. Harris, C., Gallop, M., & Coutard, J. P. (1993). Physical modelling of gelifluction and frost creep: some results of a large‐scale laboratory experiment. Earth Surface Processes and Landforms, 18(5), 383-398. http://doi.org/10.1002/esp.3290180502 [
DOI:10.1002/esp.3290180502]
15. Ildermi, A. (2012). The study occurring and formation reasons debris flows in slope Alvand north Hamedan. Geographic Space, 12(37), 217-245 (In Persian).
16. Ildoromi, A., & Nouri, H. (2017). Investigating the Role of Effective Morphodynamic and Climatic Factors in the Emergence and Development of Debris Flow in Central Zagros. Geography and Environmental Planning, 28(1), 61-82. http://doi.org/10.22108/GEP.2017.97678.0 (In Persian).
17. Jodi R, Esmali Ouri A, Mostafazadeh R, Golshan M. (2023). Flood Susceptibility Mapping using the Frequency Ratio Method in Khiav Chai Watershed, Ardabil. Journal of Watershed Management Research, 14(27), 1-14. http://doi.org/10.22034/GMPJ.2021.131011 (In Persian). [
DOI:10.61186/jwmr.14.27.1]
18. Karam, A., Paknejad, F., & Bahram Abadi, E. (2021). Zonation of unstable slopes with respect to the debris flows using random forest algorithm (case study: Basin Tngrah Golestan Province). Quantitative Geomorphological Research, 9(4), 59-74 (In Persian).
19. Kazakis, N., Kougias, I., & Patsialis, T. (2015). Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: Application in Rhodope-Evros region, Greece. Science of the Total Environment, 538, 555-563. http://doi.org/10.1016/j.scitotenv.2015.08.055 [
DOI:10.1016/j.scitotenv.2015.08.055]
20. Khezri, S., Ahmadi, M., & Mohammadi, M, A. (2015). Analysis and risk zoning of debris flows and their cones in the mountainous region of Paveh. Quantitative Geomorphological Research, 3(4), 1-16 (In Persian).
21. Liu, X., & Lei, J. (2003). A method for assessing regional debris flow risk: an application in Zhaotong of Yunnan province (SW China). Geomorphology, 52(3-4), 181-191. http://doi.org/10.1016/S0169-555X(02)00242-8 [
DOI:10.1016/S0169-555X(02)00242-8]
22. Lorestani, Gh., & Yousefi Roshan, M. (2018). Investigating the influencing variables on the volume of debris cones along Haraz Valley. Quantitative Geomorphological Research, 4(1), 21-31 (In Persian).
23. Madadi, A., Ghafari, A., & Piroozi, E. (2017). Zonation of Debris Cones and Talus Slopes in Aghlaghan Chay Basin (South Western Slope of Sabalan Mountain). Geography and Environmental Sustainability, 6(4), 17-33 (In Persian).
24. Pasuto, A., & Soldati, M. (2004). An integrated approach for hazard assessment and mitigation of debris flows in the Italian Dolomites. Geomorphology, 61(1-2), 59-70. http://doi.org/10.1016/j.geomorph.2003.11.006 [
DOI:10.1016/j.geomorph.2003.11.006]
25. Shirzadi A, Solaimani K, Habibnejad Roshan M, Kavian A, Ghasemian B. (2016). Comparison of Logistic Regression, Frequency Ratio and AHP In Rock Fall Susceptibility Mapping (Case Study: Kurdistan Province, Salavat Abad Saddle). Journal of Watershed Management Research, 6(12), 193-204 (In Persian).
26. Van Westen, C. J., Soeters, R., & Rengers, N. (1993). Geographic information systems as applied to landslide hazard zonation. University of Twente.
27. Walter, F., Amann, F., Kos, A., Kenner, R., Phillips, M., de Preux, A., & Bonanomi, Y. (2020). Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows. Geomorphology, 351, 106933. http://doi.org/10.1016/j.geomorph.2019.106933 [
DOI:10.1016/j.geomorph.2019.106933]
28. Yu, B., Ma, Y., & Wu, Y. (2013). Case study of a giant debris flow in the Wenjia Gully, Sichuan Province, China. Natural Hazards, 65(1), 835-849. http://doi.org/10.1007/s11069-012-0395-y [
DOI:10.1007/s11069-012-0395-y]
29. Zou, Q., Cui, P., He, J., Lei, Y., & Li, S. (2019). Regional risk assessment of debris flows in China-An HRU-based approach. Geomorphology, 340, 84-102. http://doi.org/10.1016/j.geomorph.2019.04.027 [
DOI:10.1016/j.geomorph.2019.04.027]