1. Aditian, A., Kubota, T., Shinohara, Y, (2018). Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia", Geomorphology, Vol. 318, pp 101-111. [
DOI:10.1016/j.geomorph.2018.06.006]
2. Arabameri A, rezaei K, sohrabi M, shirani K.(2019). Evaluating of Quantitative Geomorphometric Parameters Efficiency in Increasing the Accuracy of Landslide Sensitivity Maps (Case Study: Fereydoun Shahr Basin, Isfahan Province) . Journal of Watershed Management Research, 9 (18) :220-232(In Persian). http://jwmr.sanru.ac.ir/article-1-821-fa.html [
DOI:10.29252/jwmr.9.18.220]
3. Aznar-Sánchez, José A., Luis J. Belmonte-Ureña, María J. López-Serrano, and Juan F. Velasco-Muñoz. (2018). Forest Ecosystem Services: An Analysis of Worldwide Research. Forests, 9(8): 453. [
DOI:10.3390/f9080453]
4. Chalise, D., Kumar, L., Kristiansen, P. (2019). Land Degradation by Soil Erosion in Nepal: A Review. Soil Syst, 3, 12. [
DOI:10.3390/soilsystems3010012]
5. Donnini, M., Napolitano, E., Salvati, P., Ardizzone, F., Bucci, F., Fiorucci, F., Santangelo, M., Cardinali, M., Guzzetti, F, (2017), "Impact of event landslides on road networks: a statistical analysis of two Italian case studies", Landslides, Vol. 14, pp 1521-1535. [
DOI:10.1007/s10346-017-0829-4]
6. Fazeli Shahrodi, E., Hosseini, S. A. (2012). The study of the factors of landslide occurrence in forest watershed, Conference of the Engineering Geological and Environmental Society of Iran. (In Persian)https://civilica.com/doc/232908/
7. Gourabi B., Ramadan E. and Hoda E. (2009). Landslide and ways to stabilize it. Amash Mohit Journal, Vol 2, NO 7, pp. 129-139. (In Persian)https://sid.ir/paper/130428/fa
8. Hayati, E., Majnounian, B., Abdi, E., Dastranj, A. and A. Nazari Samani. (2012). Applying Landslide Hazard Zonation in Forest Road Network Design. Journal of Forest and Wood Products (JFWP) (Iranian Journal of Natural Resources), 65(1), 19-32. (In Persian) https://sid.ir/paper/162927/en
9. Huang, F., Chen, J., Du, Z., Yao, C., Huang, J., Jiang, Q., Chang, Z., Li, S. (2022). Landslide Susceptibility Prediction Considering Regional Soil Erosion Based on Machine-Learning Models. ISPRS Int. J. Geo-Inf, 9, 377.
https://doi.org/10.3390/ijgi9060377 [
DOI:10.3390/ijgi9060377.]
10. Jarjani A, akbari H, Hosseini S A, Abdi O. Investigation of Landslide Ranger Zoning using Analytical Hierarchy Process in GIS Environment (Case Study: Azadshahr Kohmian Forestry Design). Journal of Watershed Management Research, 9 (18) :197-207.http://jwmr.sanru.ac.ir/article-1-883-fa.html [
DOI:10.29252/jwmr.9.18.197]
11. Khan, H., Shafique, M.,.Khan, MA., .Bacha, MA., Shah, SU., Calligaris, C, (2019), "Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan", The Egyptian Journal of Remote Sensing and Space Science, Vol. 22(1), pp 11-24. [
DOI:10.1016/j.ejrs.2018.03.004]
12. Khetkeh A, hosseini S A, abdie E, ahmadauli K, koohi S.( 2021). Landslide Hazard Zoning by Density Area Model and Hierarchical Analysis to Assess the Pathway Designed for the Chellir District in the Khayrud Forest. Journal of Watershed Management Research, 12 (23) :273-284. (In Persian)http://dx.doi.org/10.52547/jwmr.12.23.273 [
DOI:10.52547/jwmr.12.23.273]
13. Kouhpeima, A., & Feiznia, S. (2019). Investigation of factors affecting landslide and their susceptibility zoning in Latyan catchment. Journal of Range and Watershed Managment, 71(4), 1073-1083. (In Persian) [
DOI:10.22059/jrwm.2019.235737.1141]
14. Lin, L., Chen, G., Shi, W., Jin, J., Wu, J., Huang, F., Chong, Y., Meng, Y., Li, Y., Zhang, Y. (2022). Spatiotemporal Evolution Pattern and Driving Mechanisms of Landslides in the Wenchuan Earthquake-Affected Region: A Case Study in the Bailong River Basin, China. Remote Sens, 14, 2339. [
DOI:10.3390/rs14102339]
15. Nasiri, V., Beloiu, M., Darvishsefat, A.A., Griess, V.C., Maftei, C., Waser, L.T. (2023). Mapping tree species composition in a Caspian temperate mixed forest based on spectral-temporal metrics and machine learning. International Journal of Applied Earth Observation and Geoformation, 116: 103154. (In Persian) [
DOI:10.1016/j.jag.2022.103154]
16. Nasiri, V., Sadeghi, S.M.M., Bagherabadi, R. et al. 2022. Modeling wildfire risk in western Iran based on the integration of AHP and GIS. Environ Monit Assess 194, 644 (2022). (In Persian) [
DOI:10.1007/s10661-022-10318-y]
17. Raftnia, N., Mohammad Kazem, K., Tawfiq, A. (2009). Investigating the causes of landslides in Glendrud forest: a case study series 3 of watershed 48. Quarterly Journal of Natural Resources Sciences and Techniques, 6th Saas, No. 1. (In Persian)https://1jstnr.chalous.iau.ir/article_544351.html
18. Yaghoubzadeh, M., Salmanmahiny, A., Mikaeili Tabrizi, A., Danehkar, A., & Moslehi, M. (2021). Prioritizing Environmental Hazards of Mangrove Forests in Hormozgan Province. Journal of Natural Environmental Hazards, 10(30), 69-82.