1. Boano, F., Harvey, J.W., Marion, A., Packman, A.I., Revelli, R., Ridolfi, L., & Wörman, A. 2014. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics. 52(4): 603-679. [
DOI:10.1002/2012RG000417]
2. Buss, S., Cai, Z., Cardenas, B., Fleckenstein, J., Hannah, D., Heppell, K., & Wood, P. 2009. The Hyporheic Handbook: a handbook on the groundwater-surface water interface and hyporheic zone for environment managers. http://publications.environment-agency.gov.uk/
3. Cardenas, M. B. 2015. Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus. Water Resources Research. 51(5): 3601-3616. [
DOI:10.1002/2015WR017028]
4. Doughty, M., Sawyer, A. H., Wohl, E., & Singha, K. 2020. Mapping increases in hyporheic exchange from channel-spanning logjams. Journal of Hydrology. 587(1): 124931. http://dx.doi.org/10.1016/j.jhydrol.2020.124931 [
DOI:10.1016/j.jhydrol.2020.124931]
5. Elder, K. and Kattelman, R. 1990. Refinements in dilution gauging for mountain stream, Hydrology in Mountainous Regions. 193(1). : 247- 254. http://www.forrex.org/streamline
6. Elliott, A. H., and Brooks, N. H. 1997. Transfer of nonsorbing solutes to a streambed with bed forms: Theory. Water Resources Research. 33(1): 123-136. [
DOI:10.1029/96WR02784]
7. Gees, A. 1990, Flow measurement under difficult measuring conditions: field experience with the salt dilution method, Hydrology in Mountainous Regions. 193: 255-262. https://api.semanticscholar.org/CorpusID:126419937
8. Hester, E. T., & Doyle, M. W. 2008. Instream geomorphic structures as drivers of hyporheic exchange. Water Resources Research: 44-47 . [
DOI:10.1029/2006WR005810]
9. Johnston, D.E. 1988, Some Recent Developments of Constant- Injection Salt Dilution Gauging in River, Journal of Hydrology (N. Z.). 27(2): 128- 153. https://www.jstor.org/stable/43944616
10. Liu, S., & Chui, T. F. M. (2020). Optimal In-Stream Structure Design through Considering Nitrogen Removal in Hyporheic Zone. Water, 12(5). http://dx.doi.org/10.3390/w12051399 [
DOI:10.3390/w12051399]
11. Marshall, A., Zhang, X., Sawyer, A. H., Wohl, E., & Singha, K. (2023). Logjam Characteristics as Drivers of Transient Storage in Headwater Streams. Water Resources Research, 59(3), e2022WR033139. [
DOI:10.1029/2022WR033139]
12. Moor, R.D. 2005, Introduction to Salt Dilution Gauging for Stream flow Measurement Part III: Slug Injection Using Salt in Solution, Streamline Watershed Management Bulletin. 8(2): 1-6. http://www.forrex.org/streamline
13. Moore, R. D. 2005. Slug injection using salt in solution. Streamline Watershed Management Bulletin. 8(2), 1-6. http://www.forrex.org/streamline
14. Orghidan, T. 1959. A new Lebensraum of unterirdischen Waters: der hyporheische Biotop. Arch. Hydrobiol, 55(3): 392-414. http://dx.doi.org/10.1127/1863-9135/2010/0176-0291 [
DOI:10.1127/1863-9135/2010/0176-0291]
15. Packman, A. I., Salehin, M., and Zaramella, M. 2004. Hyporheic exchange with gravel beds: basic hydrodynamic interactions and bedform-induced advective flows. Journal of Hydraulic Engineering. 130(7): 647-656. http://dx.doi.org/10.1061/(ASCE)0733-9429(2004)130:7(647) [
DOI:10.1061/(ASCE)0733-9429(2004)130:7(647)]
16. Stewardson, M., Datry, T., Lamouroux, N., Pella, H., Thommeret, N., Valette, L., & Grant, S. 2016. Variation in reach-scale hydraulic conductivity of streambeds. Geomorphology. 2591: 70-80. Stewardson, M., Datry, T., Lamouroux, N., Pella, H., Thommeret, N., Valette, L., & Grant, S. 2016. Variation in reach-scale hydraulic conductivity of streambeds. Geomorphology. 2591: 70-80. [
DOI:10.1016/j.geomorph.2016.02.001]
17. Sawyer, A. H., Bayani Cardenas, M., & Buttles, J. 2011. Hyporheic exchange due to channel‐spanning logs. Water Resources Research. 471: 47-53. [
DOI:10.1029/2011WR010484]
18. Shahsavari, A.A., Khodaei, K., Delkhahi, B., Hatefi, R., Asadian, F., & Najibi, S.M.A.. 2015. Design and construction of minipiezometers to determine surface water-groundwater interactions. Iranian Journal of Geology, 9(35), 61-73 , (In persian).
19. Tonina, D., & Buffington, J. M. 2009. Hyporheic exchange in Mountain Rivers I: Mechanics and environmental effects. Geography Compass. 3(3): 1063-1086. [
DOI:10.1111/j.1749-8198.2009.00226.x]
20. Tonina, D. 2005. Interaction between river morphology and intra-gravel flow paths within the hyporheic zone. (Ph.D Dissertation), University of Idaho, Boise. United States. https://www.lib.uidaho.edu/digital/etd/items/etd_139.html
21. Vaux, W. G. 1968, Intragravel flow and interchange of water in a streambed, Fish. Bull. 66(3): 479-489. [
DOI:10.1007/BF00006106]
22. Wondzell, S. M., LaNier, J., Haggerty, R., Woodsmith, R. D., & Edwards, R. T. 2009. Changes in hyporheic exchange flow following experimental wood removal in a small, low‐gradient stream. Water Resources Research. 451:45-50. https://doi:10.1029/2008WR007214, 2009 [
DOI:10.1029/2008WR007214]
23. Woessner, W. W. 2017. Hyporheic zones. In Methods in Stream Ecology. 81: 129-157. [
DOI:10.1016/B978-0-12-416558-8.00008-1]