1. Abedini, M., & beheshti javid, E. (2016). Flood risk zoning of Liqvan Chai basin using Analytic Network Process model and geographic information system. Geographic Space, 16(55), 293-312.
2. Avand, M., Moradi, H., & Ramazanzadeh lasboyee, M. (2021). Spatial modeling of flood probability using geo-environmental variables and machine learning models, case study: Tajan watershed, Iran. Advances in Space Research, 67(10), 3169-3186.
https://doi.org/10.1016/j.asr.2021.02.011 [
DOI:10.1016/j.asr.2021.02.011.]
3. Avand, M., Moradi, H., & Ramazanzadeh Lasbuie, M. (2022). Vulnerability Assessment of Tajan Watershed in Terms of Flood using BWM Method. Journal of Watershed Management Research, 13(26), 10-20. [
DOI:10.52547/jwmr.13.26.10]
4. Aydin, H. E., & Iban, M.C. (2023). Predicting and analyzing flood susceptibility using boosting-based ensemble machine learning algorithms with SHapley Additive exPlanations. Nat Hazards, 116, 2957-2991.
https://doi.org/10.1007/s11069-022-05793-y [
DOI:10.1007/s11069-022-05793-y.]
5. Bisht, S., Chaudhry, S., Sharma, S., & Soni, S. (2018). Assessment of flash flood vulnerability zonation through Geospatial technique in high altitude Himalayan watershed, Himachal Pradesh India. Remote Sensing Applications: Society and Environment, 12, 35-47.
https://doi.org/10.1016/j.rsase.2018.09.001 [
DOI:10.1016/j.rsase.2018.09.001.]
6. Cao, C., Xu, P., Wang, Y., Chen, J., Zheng, L., & Niu, C. (2016). Flash Flood Hazard Susceptibility Mapping Using Frequency Ratio and Statistical Index Methods in Coalmine Subsidence Areas. Sustainability, 8(9), 948.
https://doi.org/10.3390/su8090948 [
DOI:10.3390/su8090948.]
7. Chan, F. K. S., Griffiths, J. A., Higgitt, D., Xu, S., Zhu, F., Tang, Y. T., & Thorne, C. R. (2018). Sponge city in China - a breakthrough of planning and flood risk management in the urban context. Land use Policy, 76, 772-778. [
DOI:10.1016/j.landusepol.2018.03.005]
8. Chapi, K., Singh, V. P., Shirzadi, A., Shahabi, H., Bui, D. T., Pham, B. T., & Khosravi, K. (2017). A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environmental Modelling & Software, 95, 229-245.
https://doi.org/10.1016/j.envsoft.2017.06.012 [
DOI:10.1016/j.envsoft.2017.06.012.]
9. Costache, R. (2019). Flash-flood Potential Index mapping using weights of evidence, decision Trees models and their novel hybrid integration. Stochastic Environmental Research and Risk Assessment, 33(7), 1375-1402.
https://doi.org/10.1007/s00477-019-01689-9 [
DOI:10.1007/s00477- 019-01689-9.]
10. Dahri, N., & Abida, H. (2017). Monte Carlo simulation-aided analytical hierarchy process (AHP) for flood susceptibility mapping in Gabes Basin (southeastern Tunisia). Environmental Earth Sciences, 76(7), 302.
https://doi.org/10.1007/s12665-017-6619-4 [
DOI:10.1007/s12665-017-6619-4.]
11. Esfandiary Darabad, F., Layeghi, S., Mostafazadeh, R., & Haji, K. (2021). The zoning of flood risk potential in the Ghotorchay watershed with ANP and WLC multi-criteria decision making methods. Journal of Spatial Analysis Environmental Hazards, 8 (2), 135-150. [In Persian]
12. Garcia, M. M., Javier, F. O., Jeronimo, A. B., Pablo, A. B., & Rocio, P. B. (2008). Farmland appraisal based on the Analytic Network Process. Journal of Global Optimization, 42, 143-155. [
DOI:10.1007/s10898-007-9235-0]
13. Ghosh, S., Saha, S., & Bera, B. (2022). Flood susceptibility zonation using advanced ensemble machine learning models within Himalayan foreland basin. Natural Hazard Research, 2(4), 363-374.
https://doi.org/10.1016/j.nhres.2022.06.003 [
DOI:10.1016/j.nhres.2022.06.003.]
14. Hölting, B., & Coldewey, W. G. (2019). Hydrogeology (pp. 33-37). Münster, Germany: Springer. [
DOI:10.1007/978-3-662-56375-5]
15. Hong, H., Tsangaratos, P., Ilia, I., Liu, J., Zhu, A., & Chen, W. (2018). Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Science of the Total Environment, 625, 575-588.
https://doi.org/10.1016/j.scitotenv.2017.12.256 [
DOI:10.1016/j.scitotenv.2017.12.256.]
16. Jodi, R., Esmali Ouri, A., Mostafazadeh, R., & Golshan, M. (2023). Flood Susceptibility Mapping using the Frequency Ratio Method in Khiav Chai Watershed, Ardabil. Journal of Watershed Management Research, 14(27), 1-14. [
DOI:10.61186/jwmr.14.27.1]
17. Kaur, H., Gupta, S., Parkash, S., Thapa, R., & Mandal, R. (2017). Geospatial modelling of flood susceptibility pattern in a subtropical area of West Bengal, India. Environmental Earth Sciences, 76, 1-22.
https://doi.org/10.1007/s12665-017-6667-9 [
DOI:10.1007/s12665-017-6667-9.]
18. Khosravi, K., Nohani, E., Maroufinia, E., & Pourghasemi, H. R. (2016). A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Natural hazards, 83, 947-987. [
DOI:10.1007/s11069-016-2357-2]
19. Kiss, R. (2004). Determination of drainage network in digital elevation models, utilities and limitations. Journal of Hungarian Geomathematics, 2, 17-29.
20. Kraus, C. N., Bonnet, M. P., de Souza Nogueira, I., Morais Pereira Souza Lobo, M. T., da Motta Marques, D., Garnier, J., & Cardoso Galli Vieira, L. (2019). Unraveling flooding dynamics and nutrients' controls upon phytoplankton functional dynamics in Amazonian floodplain lakes. Water, 11(1), 154.
https://doi.org/10.3390/w11010154 [
DOI:10.3390/w11010154.]
21. Kumar, D. P., Gopinath, G., & Seralathan, P. (2007). Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India. International Journal of Remote Sensing, 28(24), 5583-5601. [
DOI:10.1080/01431160601086050]
22. Kumar, R., & Acharya, P. (2016). Flood hazard and risk assessment of 2014 floods in Kashmir Valley: a space-based multisensor approach. Natural Hazards, 84(1), 437-464. [
DOI:10.1007/s11069-016-2428-4]
23. Manfreda, S., Di Leo, M., & Sole, A. (2011). Detection of flood-prone areas using digital elevation models. Journal of Hydrologic Engineering, 16(10), 781-790.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000367 [
DOI:10.1061/(ASCE)HE.1943-5584.0000367.]
24. Mishra, K., & Sinha, R. (2020). Flood risk assessment in the Kosi megafan using multi-criteria decision analysis: A hydro-geomorphic approach. Geomorphology, 350, 106861.
https://doi.org/10.1016/j.geomorph.2019.106861 [
DOI:10.1016/j.geomorph.2019.106861.]
25. Mokhtari, D., Rezaei Moghaddam, M. H., Rahimpour, T., & Moazzez, S. (2020). Preparing the Risk Map of Flood Occurrence in the Ghomnab Chai Basin Using ANP Model and GIS Technique. Iranian Journal of Ecohydrology, 7(2), 497-509. doi: 10.22059/ije.2020.298759.1298. [In Persian]
26. Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological processes, 5(1), 3-30. [
DOI:10.1002/hyp.3360050103]
27. Mousavi, S. M., Ataie-Ashtiani, B., & Hosseini, S. M. (2022). Comparison of statistical and MCDM approaches for flood susceptibility mapping in northern Iran. Journal of Hydrology, 612. 128072.
https://doi.org/10.1016/j.jhydrol.2022.128072 [
DOI:10.1016/j.jhydrol.2022.128072.]
28. Msabi, M. M., & Makonyo, M. (2021). Flood susceptibility mapping using GIS and multi-criteria decision analysis: A case of Dodoma region, central Tanzania. Remote Sensing Applications: Society and Environment, 21(1), 100445.
https://doi.org/10.1016/j.rsase.2020.100445 [
DOI:10.1016/j.rsase.2020.100445.]
29. Nachappa, T. G., Ghorbanzadeh, O., Gholamnia, K., & Blaschke, T. (2020). Multi-hazard exposure mapping using machine learning for the State of Salzburg, Austria. Remote Sensing, 12(17), 2757. [
DOI:10.3390/rs12172757]
30. Oztekin, B., & Topal, T. A. M. E. R. (2005). GIS-based detachment susceptibility analyses of a cut slope in limestone, Ankara-Turkey. Environmental geology, 49, 124-132. [
DOI:10.1007/s00254-005-0071-6]
31. Pradhan, B. (2010). remote sensing and GIS-based landslide hazard analysis and cross- validation using multivariate logistic regression model on three test areas in Malaysia. Advances in Space Research, 45(10), 1244-1256.
https://doi.org/10.1016/j.asr.2010.01.006 [
DOI:10.1016/j.asr.2010.01.006.]
32. Rahimpour, T., Rezaei Moghaddam, M.H., Hejazi, S.A., & Vlaizadeh Kamran, K. (2023). Flood Susceptibility Modeling in the Aland Chai Basin using New Ensemble Classification Approach (FURIA-GA-LogitBoost). Journal of Geography and Environmental Hazards, 12(1), 1-24. 10.22067/geoeh.2022.74170.1141. [In Persian]
33. Rezaei Moghaddam, M. H., & Rahimpour, T. (2024). Preparation of flood hazard potential map using two methods: Frequency Ratio and Statistical Index (Case study: Aji Chai Basin). Environmental Management Hazards, 10(4), 291-308. 10.22059/jhsci.2024.369163.803
34. Rezaei Moghaddam, M. H., hejazi, A., Valizadeh kamran, K., & Rahimpour, T. (2020a). Flood Analysis of Subbasins Using WASPAS Model (Case Study: Aland Chai Basin, Northwest of Iran). Hydrogeomorphology, 7(24), 83-106. 10.22034/hyd.2020.39815.1534. [In Persian]
35. Rezaei Moghaddam, M. H., Hejazi, A., Valizadeh Kamran, K., & Rahimpour, T. (2020b). Study of Hydrogeomorphic Indices in Flood Sensitivity (Case study: Aland Chai Basin, Northwest of Iran). Quantitative Geomorphological Research, 9(2), 195-214. 10.22034/gmpj.2020.118241. [In Persian]
36. Saaty, T.L., & Vargas, L.G. (2006). Decision Making with the Analytic Network Process. New York. Springer Science, 363 pp.
37. Saeed, M. (2020). Flood Hazard Assessment and Zonation Using Artificial Neural Network Model: A Study OF River Kabul, Peshawar Vale, Pakistan. Ph.D (Thesis), University of Peshawar, Pakistan. 140 pages.
38. Saikh, N.I., & Mondal, P. (2023). GIS-based machine learning algorithm for flood susceptibility analysis in the Pagla river basin, Eastern India. Natural Hazards Research, 3(3), 420-436.
https://doi.org/10.1016/j.nhres.2023.05.004 [
DOI:10.1016/j.nhres.2023.05.004.]
39. Van, E.T., Schwarz, A. (2020). Plastic debris in rivers. Wiley Interdisciplinary Reviews: Water, 7(1), 1-24. [
DOI:10.1002/wat2.1398]
40. WHO (World Health Organization). (2022). Floods. 2017. Available online: https://www.who.int/health- topics/floods (accessed on 13 January 2022).
41. Wu, Q., Zhao, Z., Liu, L., Granger, D.E., Wang, H., Cohen, D.J., Wu, X., Ye, M., Bar- Yosef, O., Lu, B., & Zhang, J. (2017). Response to Comments on "Outburst flood at 1920 BCE supports historicity of China's Great Flood and the Xia dynasty. Science, 355(6332), 1382.
https://doi.org/10.1126/science.aal1325 [
DOI:10.1126/science.aal1325.]
42. Wu, Y. L., Li, W. P., Wang, Q. Q., Liu, Q. Q., Yang, D. D., Xing, M. L., Pei, Y. B., & Yan, S. S. (2016). Landslide susceptibility assessment using frequency ratio, statistical index and certainty factor models for the Gangu County, China. Arabian Journal of Geosciences, 9, 84.
https://doi.org/10.1007/s12517-015-2112-0 [
DOI:10.1007/s12517-015-2112-0.]
43. Xie, H., Dong, J., Shen, Z., Chen, L., Lai, X., Qiu, J., Wei, G., Peng, Y., & Chen, X. (2019). Intra-and inter-event characteristics and controlling factors of agricultural nonpoint source pollution under different types of rainfall-runoff events. Catena, 182, 104105.
https://doi.org/10.1016/j.catena.2019.104105 [
DOI:10.1016/j.catena.2019.104105.]
44. Yariyan, P., Janizadeh, S., Van Phong, T., Nguyen, H. D., Costache, R., Van Le, H., Thai Pham, B., Pradhan, B., & Tiefenbacher, J. P. (2020). Improvement of best first decision trees using bagging and dagging ensembles for flood probability mapping. Water Resources Management, 34, 3037-3053. [
DOI:10.1007/s11269-020-02603-7]
45. Youssef, A. M., Pradhan, B., & Hassan, A. M. (2011). Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environmental Earth Sciences, 62(3), 611-623. [
DOI:10.1007/s12665-010-0551-1]
46. Zhang, G., Feng, G., Li, X., Xie, C., & Pi, X. (2017). Flood effect on groundwater recharge on a typical silt loam soil. Water, 9(7), 523.
https://doi.org/10.3390/w9070523 [
DOI:10.3390/w9070523.]