1. Al-Seikh, S.H. (2006). The Effect of Different Water Harvesting Techniques on Runoff, Sedimentation, and Soil Characteristics. University College.
2. Asadolahi, Z., Salmanmahiny, A., & Mirkarimi, H. (2015). Modeling the Supply of Sediment Retention Ecosystem Service (Case study: Eastern Part of Gorgan-Rud Watershed, Environmental Erosion Research, 5(3), 61-75. [In Persian]
3. Assouline, S., & Ben-Hur, M. (2006). Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing. Catena, 66(3), 211-220. [
DOI:10.1016/j.catena.2006.02.005]
4. Barzali, M., Azimi, M., Abdul Hosseini, M., & Lotfi, A. (2022). Evaluation of rangeland ecosystem services from the perspective of sediment retention potential using InVEST software package (case study of Etrak watershed - Golestan province). Pasture and Desert Research of Iran, 29(1), 133-144. doi: 10.22092/ijrdr.2022.126019. [In Persian]
5. Behjou, F. K., Hashemian, A., Panahi, M., & Hassanzadeh, E. (2016). Economic Valuation of Soil Nutrients in Shimbars Forest Protected Area Using Replacement Cost. Environmental Sciences, 14(1), 137-146. [In Persian]
6. Brazão, C., Villela, R., Fernandes, N. F., & Cassara, L. (2022). Analysis of sediment production through InVEst and Aries modeling in the Brazilian Cerrado (No. ICG2022-623). Copernicus Meetings. [
DOI:10.5194/icg2022-623]
7. Carpenter, R., Dixon, J., Fallon Skora, L., & Sherman, P. (2005). Economic analysis of environmental consequences. Translators: Pourasghar Sangachin, F., Saleh, A. Country Management and Planning Organization, Vice-Chancellor of Administrative, Financial and Human Resources Affairs, Center for Scientific Documents. 324 pp. [In Persian]
8. Chahouki, Z., & Sanaei, A. (2018). Analysis of Natural Ecosystems Functional Value. Strategic Research Journal of Agricultural Sciences and Natural Resources, 3(1), 1-12. doi:10.22047/SRJASNR.2018.110629 [in persian]
9. Debie, E., & Awoke, Z. (2023). Assessment of the effects of land use/cover changes on soil loss and sediment export in the Tul Watershed, Northwest Ethiopia using the RUSLE and InVEST models, International Journal of River Basin Management, 1-16. [
DOI:10.1080/15715124.2023.2187399]
10. Degife, A., Worku, H., & Gizaw, S. (2021). Environmental implications of soil erosion and sediment yield in Lake Hawassa watershed, south-central Ethiopia. Environmental Systems Research, 10, 1-24. [
DOI:10.1186/s40068-021-00232-6]
11. Eyvazi, M., Alaei, N., & Mostafazadeh, R. (2022). Temporal changes in runoff and sediment of rivers in Sabalan mountain. Journal of Watershed Management Research, 13(26), 43-57. doi: 10.52547/jwmr.13.26.43. [In Persian] [
DOI:10.52547/jwmr.13.26.43]
12. Fitriyana, E. N., Supratman, O., & Mardiani, M. (2020, April). Sediment control analysis due to erosion and sediment in Cipunagara watershed, Indonesia, using SWAT model. In IOP Conference Series: Materials Science and Engineering (Vol. 830, No. 2, p. 022029). IOP Publishing. [
DOI:10.1088/1757-899X/830/2/022029]
13. Gashaw, T., Bantider, A., Zeleke, G., Alamirew, T., Jemberu, W., Worqlul, A. W., ... & Addisu, S. (2021). Evaluating InVEST model for estimating soil loss and sediment export in data scarce regions of the Abbay (Upper Blue Nile) Basin: Implications for land managers. Environmental Challenges, 5, 100381. [
DOI:10.1016/j.envc.2021.100381]
14. Gashaw, T., Bantider, A., Zeleke, G., Alamirew, T., Jemberu, W., Worqlul, A. W., ... & Addisu, S. (2021). Evaluating InVEST model for estimating soil loss and sediment export in data scarce regions of the Abbay (Upper Blue Nile) Basin: Implications for land managers. Environmental Challenges, 5, 100381. [
DOI:10.1016/j.envc.2021.100381]
15. Ghasemi Arian, Y., Azarnivand, H., & Kayanirad, A. (2015). Economic evaluation of the function of maintaining soil fertility in restored pasture ecosystems of dry areas (case study: South Khorasan international carbon sequestration project). Pasture and Watershed journals (Natural Resources of Iran, 69(4), 1031-1042. doi: 10.22059/jrwm.2017.61095. [In Persian]
16. Hamel, P., Chaplin-Kramer, R., Sim, S., Mueller, C. (2015). A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. Science of the Total Environment, 524-525, 166-177. [
DOI:10.1016/j.scitotenv.2015.04.027]
17. Han, H., Yang, J., Ma, G., Liu, Y., Zhang, L., Chen, S., & Ma, S. (2020). Effects of land-use and climate change on sediment and nutrient retention in Guizhou, China. Ecosystem Health and Sustainability, 6(1), 1-13. [
DOI:10.1080/20964129.2020.1810592]
18. Henareh Khalyani, J. (2017). Spatial valuation of Zagros forests ecosystem services and estimating of changes through Scenario Planning. PhD Dissertation. Faculty of Natural Resources, Department of Forestry and Forest Economics, University of Tehran. https://ganj.irandoc.ac.ir/#/articles/9d086fbe1a405cb7d2e37d5405db0383 [in persian]
19. Jafari, M., Ekhtesasi, M. R., & Fatahi Ardakani, A. (2020). Economic prioritization of watershed management projects based on the impact on water, soil and plant resources. Journal of Watershed Management Research, 11(22), 132-141. doi: 10.52547/jwmr.11.22.132. [In Persian] [
DOI:10.52547/jwmr.11.22.132]
20. King, D.A., & Sinden, J.A. (1988). Influence of Soil Conservation on Farm Land Values. Land Economics, 64(3), 242-255.
https://doi.org/10.2307/3146248 [
DOI:10.2307/3146248.]
21. Kumar, S., & Kushwaha, S. P. S. (2013). Modelling soil erosion risk based on RUSLE-3D using GIS in a Shivalik sub-watershed. Journal of Earth System Science, 122, 389-398.
https://doi.org/10.1007/s12040-013-0276-0 [
DOI:10.1007/s12040-013-0276-0.]
22. Mani, F., & Hannachi, C. (2019). An analysis of sediment production and control in Rmel river basin using InVEST Sediment Retention model. Journal of New Sciences, 66(4), 4170-4181.
23. Ninan, K. N., & Kontoleon, A. (2016). Valuing forest ecosystem services and disservices-Case study of a protected area in India. Ecosystem Services, 20, 1-14. [
DOI:10.1016/j.ecoser.2016.05.001]
24. Sadat, M., Salehi, A., & Amiri, M.J. (2022). Quantitative modeling of temporal-spatial changes of soil maintenance and erosion potential and sediment production (the studied area of Lahijan-Chabaksar and Astana Kochsefahan watersheds). Environment, 48(4), 577-596. [
DOI:10.22059/jes.2023.348202.1008357 [In Persian]]
25. Sadeghi, S. H., & Tavangar, S. (2015). Development of stational models for estimation of rainfall erosivity factor in different timescales. Natural Hazards, 77(1), 429-443. [
DOI:10.1007/s11069-015-1608-y]
26. Sánchez-Canales, M., López-Benito, A., Acuña, V., Ziv, G., Hamel, P., Chaplin-Kramer, R., & Elorza, F. J. (2015). Sensitivity analysis of a sediment dynamics model applied in a Mediterranean river basin: Global change and management implications. Science of the Total Environment, 502(1), 602-610. [
DOI:10.1016/j.scitotenv.2014.09.074]
27. Sekoti Eskoi, R. & Basharti, H. (2022). An overview of the economic valuation of soil. Land Management, 10(1), 1-16. doi: 10.22092/lmj.2019.123225.149. [In Persian]
28. Sun, W., Shao, Q., Liu, J., & Zhai, J.(2014). Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena, 121(1), 151-163. [
DOI:10.1016/j.catena.2014.05.009]
29. Thapa, P. (2020). Spatial estimation of soil erosion using RUSLE modeling: a case study of Dolakha district, Nepal. Environmental Systems Research, 9(1), 1-10. [
DOI:10.1186/s40068-020-00177-2]
30. Ureta, J. C., Trespalacio, G. M., Anastacio, N. J. C., Sapugay, A. F., & Ureta, J. U. (2022). Estimating Sediment Export and Retention Capacity of Existing Land Cover in Balanac and Sta. Cruz Watersheds, Philippines Using InVEST-SDR Model. Philippine Journal of Science, 151(5), 1963-1978 [
DOI:10.56899/151.05.34]
31. Vigiak, O., Borselli, L., Newham, L.T.H., Mcinnes, J., & Roberts, A.M. (2012). Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology 138(1), 74-88. [
DOI:10.1016/j.geomorph.2011.08.026]
32. Zabihi, M., Moradi, H., Khalidi-Darvishan, A., & Gholam Alifard, M. (2021). Application of InVEST eco-services model in prioritizing Talar subwatersheds in terms of soil loss, retention and sediment production. Environment and Water Engineering, 7(2), 293-303. doi:10.22034/jewe.2020.257980.1470. [In Persian]
33. Zhou, Q., Chen, L., Singh, V. P., Zhou, J., Chen, X., & Xiong, L. (2019). Rainfall-runoff simulation in karst dominated areas based on a coupled conceptual hydrological model. Journal of Hydrology. 573, 524-533. [
DOI:10.1016/j.jhydrol.2019.03.099]