دوره 16، شماره 2 - ( پاییز و زمستان 1404 )                   جلد 16 شماره 2 صفحات 78-63 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeghi S H, Chamani R, Zabihi Seilabi M, Tavosi M, Katebikord A, Nouri H, et al . (2025). Comparative Integrated Prioritization of the Status and Performance Conditions of Iran's Second-Order Watersheds Using Game Theory. J Watershed Manage Res. 16(2), 63-78. doi:10.61882/jwmr.2025.1285
URL: http://jwmr.sanru.ac.ir/article-1-1285-fa.html
صادقی سیّد حمیدرضا، چمنی رضا، ذبیحی سیلابی مصطفی، طاوسی محمد، کاتبی کرد آزاده، نوری حمید، و همکاران. و همکاران..(1404). اولویت‌بندی جامع مقایسه‌ای وضعیت و شرایط عملکردی آبخیزهای رده دوم کشور با استفاده از تئوری بازی پ‍‍ژوهشنامه مديريت حوزه آبخيز 16 (2) :78-63 10.61882/jwmr.2025.1285

URL: http://jwmr.sanru.ac.ir/article-1-1285-fa.html


1- گروه مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور، ایران
2- دانشکده منابع طبیعی و محیط زیست، دانشگاه ملایر و در حال حاضر مدیر مرکز بین‌المللی مدیریت جامع حوزه‌های آبخیز و منابع زیستی در مناطق خشک و نیمه‎ خشک تحت پوشش یونسکو، سازمان منابع طبیعی و آبخیزداری کشور، تهران، ایران
چکیده:   (1238 مشاهده)
چکیده مبسوط
مقدمه: حفاظت، بهره‌برداری و مدیریت پایدار منابع طبیعی حوزه‌های آبخیز برای تأمین نیازهای جمعیت روبه‌رشد از اولویت خاصی برخوردار هستند. آسیب به منابع طبیعی عوارض جبران‌ناپذیری از جمله سیلاب‌های شدید، فرسایش خاک و در نتیجه خسارات جانی و مالی را به‎ دنبال دارد. بنا بر این، از یک‎ سو اجرای برنامه‌های حفاظت و احیای منابع طبیعی ضروری است و از سوی دیگر کمبود اعتبارات و محدودیت‌های اقتصادی، فنی و زمانی در حوزه‌های آبخیز مختلف باعث می‌شوند تا اقدامات مدیریتی در قسمت‌هایی از حوزه‌های آبخیز که شرایط حساس‌تری نسبت به سایر مناطق دارند، انجام شوند. بر همین اساس، اولویت‌بندی مناطق مختلف یک حوزه آبخیز براساس شدت مشکل ابزار مفیدی برای دولت در تهیه راهبردهای توسعه منطقه‌ای است. با این ‌حال، استفاده از یک رویکرد مناسب برای اتخاذ یک تصمیم مدیریتی با لحاظ نظر تمامی گروداران و کم‌کردن نظرات کارشناسی ضروری است، حال آنکه این موضوع در مقیاس حوزه آبخیز کم‌تر موردتوجه قرار گرفته است. در همین راستا، در پژوهش حاضر برای اولویت‌بندی مقایسه‌ای حوزه‌های آبخیز درجه دوم کشور از نظریه بازی به دلیل کاهش اثر نظر کارشناسی استفاده شده است. امید است که نتایج این پژوهش سیاست‌گذاران، مدیران و تصمیم‌گیران در مدیریت جامع آبخیزهای کشور و حفظ منابع آب‌وخاک را یاری کنند. اگرچه دستیابی به رویکردهای تفصیلی و اجرایی در مقیاسهای عملیاتی نیازمند انجام پژوهشهای گسترده‌تر با مقیاس بزرگتر و در بخشها و یا آبخیزهای با اولویت مدیریتی بالا است.
مواد و روش‌ها: برای اولویت‌بندی مقایسه‌ای حوزه‌های آبخیز درجه دو کشور در ابتدا 44 معیار ملی و قابل‌دسترس اقلیمی، انسانی، هیدرولوژیکی و طبیعی انتخاب شدند. در ادامه، مقادیر معیارهای مورد مطالعه برای هر یک از حوزه‌های آبخیز درجه دوم استخراج شدند و با توجه به ماهیت معیارها و نوع تأثیر آن‌ها بر عملکرد آبخیز‌ها، مقیاس‌بندی لازم انجام شد. برای حذف همبستگی درونی معیارهای مطالعه، از معیار آماری عامل تورم واریانس استفاده شد. در همین راستا، 26 معیار برای اولویت‌بندی مقایسه‌ای نهایی شدند. در مرحله بعد، رویکرد Condorcet برای اولویت‌بندی جامع مقایسه‌ای با درنظرگرفتن 26 معیار استفاده شد. در همین راستا، مقادیر معیارهای نهایی‎ شده در آبخیزهای 30گانه رتبه‌بندی شدند. آبخیزی که بهترین وضعیت را از لحاظ معیار مطالعاتی داشت در رتبه اول و آبخیز با بدترین وضعیت در رتبه آخر قرار گرفتند و این روال برای تمامی معیارهای مطالعاتی مدنظر قرار گرفت. پس از رتبه‌بندی آبخیزها با در نظر گرفتن معیارها، اولویت‌بندی مقایسه‌ای بین آبخیزهای رده دوم کشور انجام و آبخیزهای با بیش‌ترین و کم‌ترین برد در مقایسات جفتی، به‎ ترتیب به‌عنوان آبخیزهای با اولویت کم و بالا شناسایی شدند. در نهایت، نقاط ضعف و قوت آبخیزهای مطالعاتی با توجه به معیارهای مورد بررسی مشخص شدند.
یافته‌ها: براساس نتایج، آبخیزهای 30گانه کشور در بین 26 معیار مطالعاتی حداقل یک‌بار در رتبه‌های اول تا چهارم قرار گرفته‌اند. آبخیز‌های جراحی و زهره با 3 و کویر درانجیر با 54 امتیاز به‎ ترتیب دارای کم‌ترین و بیش‌ترین امتیاز و بدترین و بهترین شرایط را با توجه به 26 معیار نهایی شده دارند. بررسی وضعیت آبخیز جراحی و زهره نشان می دهد که این آبخیز از لحاظ تراکم زهکشی، فرسایش ویژه و تراکم‌ آبراهه‌های با رتبه چهار وضعیت خوبی ندارد. از سوی دیگر، وضعیت کویر درانجیر در شاخص طبیعت‌گرایی، تغذیه آب‌های زیرزمینی، غلظت کربن مونواکسید، تراکم آبراهه‌های با رتبه 4، مهاجرت، فرسایش ویژه، جمعیت و جریان خروجی انسانی در مقایسه با غالب آبخیزها بهتر است. با توجه به معیارهای مطالعاتی، وضعیت و شرایط عملکردی آبخیز جراحی و زهره در جنوب‌غربی، آبخیز هامون جازموریان در جنوب‌شرقی، آبخیز بندرعباس-سدیج در جنوب، آبخیزهای کویر مرکزی و ابرقو سیرجان در مرکز و آبخیزهای دریاچه ارومیه، سفیدرود و ارس در شمال‌غربی در مقایسه با سایر آبخیزها ضعیف هستند و باید بیش‌تر مورد توجه قرار گیرند. بر اساس نتایج به‌دست‌آمده، متغیرهای مختلفی در اولویت‌بندی حوزه‌های آبخیز کشور مؤثر هستند که نیاز به ارزیابی دقیق و علمی تأثیرات هر یک بر عملکرد حوزه‌های آبخیز دارد. هم‌چنین، نتایج این تحقیق میتوانند سهم ارزنده‌ای در نحوه تخصیص اعتبارات در ارائه راهکارهای مدیریتی و انجام مطالعات دقیق اجرایی در مقیاس بزرگ‌تر و حوزه‌های آبخیز کوچک‌تر داشته باشند.
نتیجه‌گیری: در پژوهش حاضر، از مجموعه متغیرهای تأثیرگذار و در دسترس در آبخیزها برای اولویت‌بندی مقایسه‌ای آن‌ها استفاده شده است. لازم به ذکر است که با توجه به این‌که مبنای مقایسه در رویکرد Condorcet مقایسههای جفتی است، بنا بر این زیرآبخیزهای جراحی و زهره و کویر درانجیر زیرآبخیزهایی هستند که در مقایسههای جفتی بین سایر زیرآبخیزها در معیارهای مذکور، به ترتیب بیش‌ترین و کم‌ترین باخت را تجربه کرده‌اند. بر این ‌اساس، نتایج اولویت‌بندی زمانی قابل‌اعتماد خواهند بود که مدیر مربوطه با فرآیند اولویت‌بندی، نوع معیارها و هم‌چنین هدف مطالعه حاضر آگاهی کامل داشته باشد. طبیعتاً، نتایج حاصل از مقیاس مورد استفاده در پژوهش فعلی، امکان تهیه و تدوین طرح‌های اجرایی مدیریت آبخیزهای کشور را مهیا نمی‌کنند ولی زیربنای خوبی برای تمرکز توجهات بخش‌ها و سازمان‌های متولی حفاظت منابع آب ‌و خاک کشور در خصوص سیاست‌گذاری و برنامه‌ریزی در مقیاس ملی و سپس انجام مطالعات تفصیلی و هدفمندانه در مقیاس‌های بزرگ در آبخیزهای با اولویت بالا را فراهم نموده اند. اگرچه انجام پژوهش‌های گسترده‌تر با سایر شیوه‌های اولویت‌بندی مبتنی بر تئوری بازی و با سایر رویکردهای مشابه و بر اساس معیارهای فنی گسترده‌تر پیشنهاد می‌شود.

 
متن کامل [PDF 2646 kb]   (66 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مديريت حوزه های آبخيز
دریافت: 1403/11/17 | پذیرش: 1404/2/24

فهرست منابع
1. Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018) TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 5(1), 1-12. [DOI:10.1038/sdata.2017.191]
2. Abbaspour. M., Javid, A.H., Mirbagheri, S.A., Ahmadi Givi, F., & Moghimi, P. (2012) Investigation of lake drying attributed to climate change. International Journal of Environmental Science and Technology, 9, 257-266 [DOI:10.1007/s13762-012-0031-0]
3. Adhami, M., Sadeghi, S.H.R. (2016) Sub-watershed prioritization based on sediment yield using game theory. Journal of Hydrology, 541, 977-987 [DOI:10.1016/j.jhydrol.2016.08.008]
4. Adhami, M., Sadeghi, S.H.R., & Sheikhmohammady, M. (2018) Making competent land use policy using a co-management framework. Land Use Policy, 72, 171-180 [DOI:10.1016/j.landusepol.2017.12.035]
5. Ahmadi, T., Nouri, H., & Ildromi, A. (2021) Investigation on impacts of drought on landuse/landcover (lu/lc) and groundwater level changes in Razan-Ghahavand Plain. Iranian Journal of Watershed Management Science and Engineering, 15(52), 33-43. [In Persian]
6. Akbari, N., Niksokhan, M. H., Ardestani, M. (2015) Optimal water allocation using cooperative game theory (Case Study: Zayandeh Roud Watershed). Journal of Environmental Studies, 40(4), 875-889.
7. Akbarzadeh, P., & Nikoo, S. H. (2022) The investigation of the effects of the regional development in the form of change in land use on the groundwater aquifer level (A Case Study: Damghan Watershed). Geography and Environmental Sustainability, 12, 44 1-21. [In Persian]
8. Alimoradi, M., Talebi, A., & Karemi, H. (2021). Analysis of factors affecting watershed management and providing appropriate management strategy using the SWOT model (Doeiraj River Watershed Area). Extension and Development of Watershed Management, 9(35), 1-11.
9. Amir, A., & Fisher, F.M. (1991) Analyzing agricultural demand for water with an optimizing model. Agricultural Systems, 61, 45-56 [DOI:10.1016/S0308-521X(99)00031-1]
10. Ashraf, S., Nazemi, A., & AghaKouchak, A. (2021). Anthropogenic drought dominates groundwater depletion in Iran. Scientific Reports, 11(1), 9135. [DOI:10.1038/s41598-021-88522-y]
11. Avand, M., Khiavi, A. N., Mohammadi, M., & Tiefenbacher, J. P. (2023). Prioritizing sub-watersheds based on soil-erosion potential by integrating RUSLE and game-theory algorithms. Advances in Space Research, 72(2), 471-487. [DOI:10.1016/j.asr.2023.03.031]
12. Avand, MT., Nasiri Khiavi, A., Khazaei, M., & Tiefenbacher, J. P. (2021) Determination of flood probability and prioritization of sub-watersheds A comparison of game theory to machine learning. Journal of Environmental Management, 295, 1-14 [DOI:10.1016/j.jenvman.2021.113040]
13. Balouei, F., & Soltani Kopaei, S. (2021) Effect of land use change on surface runoff using SWAT and GIS in Doiraj Watershed of Ilam Province. Iranian Journal of Watershed Management Science and Engineering, 15(53), 1-11. [In Persian]
14. Banerjee, C., & Kumar D. N. (2018) Analyzing large-scale hydrologic processes using GRACE and hydrometeorological datasets. Water Resources Management, 32, 4409-4423. [DOI:10.1007/s11269-018-2070-x]
15. Banihabib, ME., Najafi Marghmaleki, S., & Shabestari, M. H. (2019) An integrated water resources planning model for assessment and prediction of environmental water supplying for Hawizeh Wetland from Turkey Iraq and Iran. Iranian Water Research Journal, 13(32), 115-126. [In Persian]
16. Bekele, E. G., Nicklow, J. W. (2005) Multi objective management of ecosystem services by integrative watershed modeling and evolutionary algorithms. Water Resources Research, 41(W10406), 1-10. [DOI:10.1029/2005WR004090]
17. Borsdorff, T., Aan de Brugh, J., Hu, H., Aben, I., Hasekamp, O., & Landgraf, J. (2018). Measuring carbon monoxide with TROPOMI: First results and a comparison with ECMWF‐IFS analysis data. Geophysical Research Letters, 45(6), 2826-2832. [DOI:10.1002/2018GL077045]
18. Chamani, R., Azari Mahmood, A., & Kralisch, S. (2020) Hydrological response to future climate changes in Chehelchay Watershed in Golestan Province. Watershed Engineering and Management 12(1), 72-85. [In Persian]
19. Colman, A. M., Pulford, B. D., & Rose, J. (2008) Collective rationality in interactive decisions: evidence for team reasoning. Acta Psychologica, 128(2), 387-397 [DOI:10.1016/j.actpsy.2007.08.003]
20. Da Silva, C. M., Teixeira, O. N., & Ishihara, J. H. (2023) Use of Game Theory as a tool for identifying and mitigating conflicts over water use in the area covered by the Estreito HPP-MA-Brazil. Aguayo Territorio/Water and Landscape, 21, 121-133. [DOI:10.17561/at.21.5896]
21. Daneshi, A., Vafakhah, M., & Panahi, M. (2017) Evaluation of Urmia Lake crisis management solutions with an emphasis on maximum participation of farmers (Case Study: Simineroud Watershed). Range and Watershed Management, 70(2), 299-314. [In Persian]
22. Davudirad, A. A., Sadeghi, S.H.R., & Sadoddin, A. (2016) The impact of development plans on hydrological changes in the Shazand Watershed Iran. Land Degradation & Development, 27(4), 1236-1244 [DOI:10.1002/ldr.2523]
23. Dragan, A., Savic, J. B., & Mark, S. M. (2011) A DSS Generator for Multi-Objective Optimization of Spreadsheet-Based models. Journal of Environmental Modeling and Software, 26(5), 551-561 [DOI:10.1016/j.envsoft.2010.11.004]
24. Eleftheriadou, E., & Mylopoulos, Y. (2008) Game theoretical approach to conflict resolution in transboundary water resources management. Journal of Water Resource Planning and Management, 134(5), 466-473 [DOI:10.1061/(ASCE)0733-9496(2008)134:5(466)]
25. Faal Jalali, A., Ghasemi, M., & Minaei, M. (2021) implementation strategies for reducing the change of agricultural land use (Case study: Binalood County). Journal of the Studies of Human Settlements Planning (Journal of Geographical Landscape), 16(1), 155-174. [In Persian]
26. Gharekhani, A., Ghahreman, N., & Bazrafshan, J. (2013) Trend analysis of pan evaporation in different climates of Iran. Watershed Management Researches (Pajouhesh-Va-Sazandegi), 26(1), 85-97. [In Persian[
27. Han, X., Wang, P., Wang, J., Qiao, M., & Zhao, X. (2020). Evaluation of human-environment system vulnerability for sustainable development in the Liupan Mountainous Region of Ningxia, China. Environmental Development, 34, p.100525. [DOI:10.1016/j.envdev.2020.100525]
28. Heidari, SH., Hanachi, P., & Teymoortash, S. (2019) The adaptive reuse of industrial heritage an approach based on energy recycle. Naqshejahan- Basic studies and New Technologies of Architecture and Planning, 9(1), 45-53. [In Persian]
29. Hoseini, Z., Mozafari, M., & Finaji, E. (2021) Impact of land use changes and expanding of irrigation on drying up of the Bakhtegan and Tashk Lakes. Civil Infrastructure Researches, 7(1), 53-65. [In Persian]
30. Ichiishi, T. (2014) Game Theory for Economic Analysis. Elsevier.
31. Jalili Kamjoo, S. P., & Khosh Akhlagh, R. (2016) Using the game theory in optimal allocation of water in Zayandehrud. Journal of Applied Economics Studies, 5(18), 53-80. [In Persian]
32. Kucukmehmetoglu, M. (2012). An integrative case study approach between game theory and Pareto frontier concepts for the transboundary water resources allocations. Journal of Hydrology, 450, 308-319. [DOI:10.1016/j.jhydrol.2012.04.036]
33. Lamy, F., Bolte, J., Santelmann, M., & Smith, C. (2002) Development and evaluation of multiple- objective decision-making methods for watershed management planning. Journal of the American Water Resources Association, 38(2), 517-52. [DOI:10.1111/j.1752-1688.2002.tb04334.x]
34. Laukkanen, S., Kangas, A., & Kangas, J. (2002) Applying voting theory in natural resource management a case of multiple-criteria group decision support. Journal of Environmental Management, 64(2), 127-137. [DOI:10.1006/jema.2001.0511]
35. Lee, C. S. (2012) Multi-Objective Game-theory models for conflict analysis in reservoir watershed management. Chemosphere, 87(6), 608-613. [DOI:10.1016/j.chemosphere.2012.01.014]
36. Liang, D., Zuo, Y., Huang, L., Zhao, J., Teng, L., & Yang, F. (2015) Evaluation of the consistency of MODIS Land Cover Product (MCD12Q1) based on Chinese 30 m GlobeLand30 datasets: A case study in Anhui Province, China. ISPRS International Journal of Geo-Information, 4(4), 2519-2541. [DOI:10.3390/ijgi4042519]
37. Lunetta, R. S., Knight, J. F., Ediriwickrema, J., Lyon, J. G., & Worthy, L. D. (2022) Land-cover change detection using multi-temporal MODIS NDVI data. In Geospatial Information Handbook for Water Resources and Watershed Management, Volume II (pp. 65-88). CRC Press. [DOI:10.1201/9781003175025-5]
38. Madani, K. (2010). Game theory and water resources. Journal of Hydrology, 381(3-4), 225-238. [DOI:10.1016/j.jhydrol.2009.11.045]
39. Madani, K., Rouhani, O. M., Mirchi, A., & Gholizadeh, S. (2014). A negotiation support system for resolving an international trans-boundary natural resource conflict. Environmental Modelling and Software, 51, 240-249 [DOI:10.1016/j.envsoft.2013.09.029]
40. Masoomi, H., Malekian, A., Salajegheh, A., & Nazari Samani, A. (2020). An Assessment of the Effect of Land Use Change on the Runoff Using the Markov Chain and Cellular Automata in the Bidgol Watershed the Province of Fars. Watershed Management Research, 33(2), 31-51. [In Persian]
41. McKinney, D., & Teasley, R. (2007). Cooperative game theory for transboundary river basins the Syr Darya Basin. World Environmental and Water Resources Congress Tampa Florida, 1-10. [DOI:10.1061/40927(243)221]
42. Mendoza, GA., & Martins, H. (2006). Multi-Criteria Decision Analysis in natural resource management a critical review of methods and new modelling paradigms forest. Ecology and Management, 230(1), 1-22. [DOI:10.1016/j.foreco.2006.03.023]
43. Mohammadi, S., Karimzadeh, H., & Alizadeh, M. (2018). Spatial estimation of soil erosion in Iran using RUSLE model. Journal of Ecohydrology, 5(2), 551-569. [In Persian]
44. Najafi, S. (2015). Assessing Watershed Management Position in the five-year development Documents of Iran. Extension and Development of Watershed Management, 3(10), 1-10.
45. Nasiri Khiavi, A., Vafakhah, M., & Sadeghi, S.H.R. (2023). Application of participatory approach in identifying critical sub-watersheds based on flood generation potential in the Cheshmeh-Kileh Watershed Mazandaran Province. Water and Soil Management and Modeling, 3(3), 90-107. [In Persian]
46. Nikjoy, M. (2023). Evaluation of performance and review of exit strategy in the management of Chelchai watershed. Comprehensive Watershed Management, online publication. https://iwm.ilam.ac.ir/article_708914.html.
47. Nikkami, D., Elektorowicz, M., & Mehuys, G. R. (2002) Optimizing the management of soil erosion water quality. Research Journal of Canada 37(3), 577-586 [DOI:10.2166/wqrj.2002.038]
48. Olatinwo, S. O., & Joubert, T. H. (2023) A bibliometric analysis and review of resource management in internet of water things the use of game theory. Water, 14(10), 1636. [DOI:10.3390/w14101636]
49. Parrachino, I., Dinar, A., & Patrone, F. (2006) Cooperative game theory and its application to natural. environmental and water resources issues 3 Application to water resources. World Rank Policy Research Working Paper, 4074. [DOI:10.1596/1813-9450-4074]
50. Petetin, H., Guevara, M., Compernolle, S., Bowdalo, D., Bretonnière, P. A., Enciso, S., & Pérez García-Pando, C. (2023) Potential of TROPOMI for understanding spatio-temporal variations in surface NO2 and their dependencies upon land use over the Iberian Peninsula. Atmospheric Chemistry and Physics, 23(7), 3905-3935. [DOI:10.5194/acp-23-3905-2023]
51. Pourghasemi, H. R., Biswajeet, P., & Candan, G. (2012) Application of fuzzy logic and analytical hierarchy process (ahp) to landslide susceptibility mapping at Haraz Watershed Iran. Natural Hazards 63(2), 965-996. [DOI:10.1007/s11069-012-0217-2]
52. Poursepahy Samian, H., & Kerachian, R. (2011). Water allocation in common rivers: application of game theory. In 6th National Congress on Civil Engineering, Semnan. [In Persian]
53. Rivest, R. L., Shen, E. (2010) An optimal single-winner preferential voting system based on game theory. in Proc of 3rd International Workshop on Computational Social Choice 13 Sep, 399-410.
54. Sadeghi, S.H.R., Chamani, R., Zabihi Silabi, M., Tavosi, M., Katebikord, A., Khaledi Darvishan, A., Moosavi, V., Sadeghi, P. S., Vafakhah, M., & Moradi Rekabdarkolaei, H. (2023). Watershed health and ecological security zoning throughout Iran. Science of The Total Environment, https://doi.org/10.1016/j.scitotenv.2023.167123 [DOI:10.1016/j.scitotenv.2023.167123.]
55. Sadeghi, S.H.R., & Hazbavi, Z. (2017) Spatiotemporal variation of watershed health propensity through reliability-resilience-vulnerability based drought index (case study: Shazand Watershed in Iran). Science of the Total Environment, 587, 168-176. [DOI:10.1016/j.scitotenv.2017.02.098]
56. Sadeghi, S. H., Silabi, M. Z., & Vafakhah, M. (2024). Soil erosion-based sub-watershed prioritization through coupling various crop management and erosivity scenarios using game theory. Advances in Space Research, 73(12), 5822-5835. [DOI:10.1016/j.asr.2024.03.001]
57. Sadeghi, S.H.R., Kazemikia, S., & Hazbavi, Z. (2018a). Selection of representative watersheds in Iran. The Integrated Watershed Management National Master Plan, 163 p. [In Persian]
58. Sadeghi, S.H.R., & Tavangar, S. H. (2015). Development of stational models for estimation of rainfall erosivity factor in different timescales. Natural Hazards, 77, 429-443. [DOI:10.1007/s11069-015-1608-y]
59. Sadeghi, S. H., Kalehhouei, M., Yekdangi, F. K., Radkianpour, M., & Dadizadeh, Y. (2024). Biological Control of Soil Erosion in the Kilanbar Watershed, Kermanshah Province, Iran. Journal of Watershed Management Research, 15(1), 1-13. [In Persian] [DOI:10.61186/jwmr.15.1.1]
60. Sadeghi, S.H.R., Vafakhah, M., Moosavi, V., Pourfallah Asadabadi, S., Sadeghi, P. S., Khaledi Darvishan, A., Bagheri Fahraji, R., Mosavinia, S. H., Majidnia, A., Gharemahmudli, S., & Rekabdarkolaei, H. M. (2022). Assessing the health and ecological security of a human induced watershed in central Iran. Ecosystem Health and Sustainability, 8(1), 2090447. [DOI:10.1080/20964129.2022.2090447]
61. Sadeghi, S.H.R., Zabihi Silabi, M., Bordoni, M., Nguyen, T. N. A., Maerker, M., & Claudia, M. (2024). A game theory-based prioritization of drought affected demo vineyards using soil main properties in the northern apennines, Italy. Catena, 237, 107767. [DOI:10.1016/j.catena.2023.107767]
62. Sadeghi, S.H.R., Zabihi Silabi, M., Katebikord, A., & Mostafazadeh, R. (2023). Soil Erosion Dynamic on Storm-Basis due to Land Use Correction in the High Priority Sub-Watersheds of the Galazchai Watershed, West Azerbaijan, Iran, Journal of Watershed Management Research, 13(26), 21-33. [In Persian] [DOI:10.52547/jwmr.13.26.21]
63. Sadeghi, S.H.R., Zabihi Silabi, M., Sarvi Sadrabad, H., Riahi, M., & Modarresi Tabatabaei, S. (2023). Watershed health and ecological security modeling using anthropogenic, hydrologic, and climatic factors. Natural Resource Modeling, e12371. [DOI:10.1111/nrm.12371]
64. Safaee, A., & Malek Mohammadi, B. (2014). Game Theoretic Insights for Sustainable Common Poll Water Resources Governance (Case Study: Lake Urmia Water Conflict). Journal of Environmental Studies, 40(1), 28-30
65. Sheikhmohammady, M., & Madani, K. (2008) Sharing a multi-national resource through bankruptcy procedures in world. Environmental and Water Resources Congress. [DOI:10.1061/40976(316)556]
66. Shi, Z. H., Ai, L., Li. X., Huang, X. D., Wu, GL., & Liao, W. (2013). Partial least squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds. Journal of Hydrology, 498, 165-176. [DOI:10.1016/j.jhydrol.2013.06.031]
67. Shirangi, E., Kerachian, R., & Bajestan, M. S. (2008). A simplified model for reservoir operation considering the water quality issues application of the young conflict resolution theory. Environmental Monitoring and Assessment, 146(1-3), 77-89. [DOI:10.1007/s10661-007-0061-0]
68. Soltani, S., Mokhtari, F., Mohit, P., & Kalhor, A. (2021). Evaluating the impact of land use change on increasing runoff in Khorramabad Watershed via HEC-HMS Model. Desert Ecosystem Engineering Journal, 10(30), 81-92. [In Persian]
69. Talebi, A., Salehpour Jam, A., Kalehui, M., & Musfaei, J. (2022). The new approach in the worthy governance watershed and sustainable development. Promotion and Development of Watershed Management, 9(35), 54-61.
70. Tecle, A., (1992). Selecting a multi criterion decision making technique for watershed resources management. Journal of the American Water Resources Association, 2(1), 129-140. [DOI:10.1111/j.1752-1688.1992.tb03159.x]
71. Teka, K., Haftu, M., Ostwald, M., & Cederberg, C. (2020). Can integrated watershed management reduce soil erosion and improve livelihoods? A study from northern Ethiopia. International Soil and Water Conservation Research, 8(3), 266-276. [DOI:10.1016/j.iswcr.2020.06.007]
72. Tofangchi Mahyari, M., Pendar, M., Sameni, A., & Khajeh Borj Sefidi, A. (2021). Analysis of the migration situation in iran's provinces with emphasis on social and cultural factors. Geography and Territorial Spatial Arrangement, 11(39), 55-80. [In Persian]
73. Üçler, N., Engin, G. O., Köçken, H. G., & Öncel, M. S. (2015) Game theory and fuzzy programming approaches for bi-objective optimization of reservoir watershed management: A case study in Namazgah Reservoir. Environmental Science and Pollution Research, 22(9), 6546-6558. [DOI:10.1007/s11356-015-4181-8]
74. Vafakhah, M., Zabihi Silabi, M., Modarresi Tabatabaei, S., Sarvi Sadrabad, H., Shafiei Bafti, A., Ghaderi Dehkordi, N., Riahi, M., & Ghiasi, S. S. (2023). Detection of annual mean discharge trend over Iran. Watershed Engineering and Management, 15(2), 314-327.
75. Weng, S. Q., Huang, G. H., & Li, Y. P. (2010). An integrated scenario-based multi-criteria decision support system for water resources management and planning, A case study in the Haihe River Basin. Expert Systems with Applications, 37(12), 8242-8254. [DOI:10.1016/j.eswa.2010.05.061]
76. Zabihi Silabi, M., Sadeghi, S. H., & Mostafazadeh, R. (2021). Effects of the Implementing Land use-based Scenarios in the Prioritized Sub-Watersheds on Soil Erosion and Sediment Yield of the Galazchai Watershed, Oshnavieh, Iran. Degradation and Rehabilitation of Natural Land. 2(3), 88-99. [In Persian]
77. Zhu, K., Zhang, Y., Wang, M., & Liu, H. (2022). The Ecological Compensation Mechanism in a Cross-Regional Water Diversion Project Using Evolutionary Game Theory the Case of the Hanjiang River Basin China. Water, 14(7), 1151 [DOI:10.3390/w14071151]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می‌باشد.

طراحی و برنامه نویسی: یکتاوب افزار شرق

© 2026 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by: Yektaweb