1. Ahmadi, F., Dinpajoh, Y., & Fard, A. F. (2014). Comparing linear and nonlinear time series models in river flow forecasting (case study: Baranduz-chai river). Irrigation Sciences and Engineering, 37(1), 93-105. [In Persian]
2. Aryanmanesh J, N. H., Mahmoodi P, Khosravi P. (2024). Reconstruction of Missing Daily Streamflow Data using the MissForest Algorithm in Southern Baluchestan Basin, Iran. Journal of Watershed Management Research, 15(2), 49-64. [In Persian] [
DOI:10.61186/jwmr.15.2.49]
3. Azimi-Habashi, S., Miryaghoubzadeh, M., Erfanian, M., & Javan, K. (2024). Projection of Future Climatic Variables based on CMIP5 and CMIP6 Models in the Gedarchay Catchment (West Azarbaijan). Journal of Watershed Management Research, 15(2), 1-16.
https://doi.org/10.61186/jwmr.15.2.1 [
DOI:doi:10.61186/jwmr.15.2.1. [In Persian]]
4. Bae, I., & Ji, U. (2019). Outlier detection and smoothing process for water level data measured by ultrasonic sensor in stream flows. Water, 11(5), 951.
https://doi.org/10.3390/w11050951 [
DOI:(doi.org/10.3390/w11050951]
5. Bahrami, M., Amiri, M.J., Rezaei Maharlouyi, F., & Ghaffari, K. (2018). Determining the effect of data preprocessing on the performance of artificial neural networks for predicting monthly precipitation in Abadeh County. Eco-Hydrology, 4(1), 29-37. [In Persian]
6. Ben-Gal, I. (2005). Outlier detection. Data Mining and Knowledge Discovery Handbook, 131-146.
https://doi.org/10.1007/0-387-25465-X_7 [
DOI:doi.org/10.1007/0-387-25465-X_7]
7. Boiten, W. (2003). Hydrometry: IHE Delft lecture note series. CRC press.
https://doi.org/10.1201/9780203971093 [
DOI:doi.org/10.1201/9780203971093]
8. Boukerche, A., Zheng, L., & Alfandi, O. (2020). Outlier detection: Methods, models, and classification. ACM Computing Surveys (CSUR), 53(3), 1-37.
https://doi.org/10.1145/3381028 [
DOI:doi.org/10.1145/3381028]
9. Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: identifying density-based local outliers. Proceedings of the 2000 ACM SIGMOD. International Conference on Management of Data. [
DOI:10.1145/335191.335388]
10. Cohn, T. A., England, J., Berenbrock, C., Mason, R., Stedinger, J., & Lamontagne, J. (2013). A generalized Grubbs‐Beck test statistic for detecting multiple potentially influential low outliers in flood series. Water Resources Research, 49(8), 5047-5058.
https://doi.org/10.1002/wrcr.20392 [
DOI:doi.org/10.1002/wrcr.20392]
11. D'Agostino, R. B. (1986). Goodness-of-fit-techniques (Vol. 68). CRC press.
12. Dave, D., & Varma, T. (2014). A review of various statistical methods for outlier detection. International Journal of Computer Science & Engineering Technology (IJCSET), 5(2), 137-140.
13. Donoho, D. L., & Huber, P. J. (1983). The notion of breakdown point. A Festschrift for Erich L. Lehmann, 157184.
14. Fenton, J. D., & Keller, R. J. (2001). The calculation of streamflow from measurements of stage.
15. Goldstein, M., & Dengel, A. (2012). Histogram-based outlier score (hbos): A fast unsupervised anomaly detection algorithm. KI-2012:Poster and Demo Track, 1, 59-63.
16. Grubbs, F. E. (1969). Procedures for detecting outlying observations in samples. Technometrics, 11(1), 1-21. [
DOI:10.1080/00401706.1969.10490657]
17. Herschy, R. W. (2008). Streamflow Measurement. CRC press. [
DOI:10.1201/9781482265880]
18. Holmström, H., & Fransson, J. E. (2003). Combining remotely sensed optical and radar data in k NN-estimation of forest variables. Forest Science, 49(3), 409-418.
https://doi.org/10.1093/forestscience/49.3.409 [
DOI:doi.org/10.1093/forestscience/49.3.409]
19. Horner, I., Renard, B., Le Coz, J., Branger, F., McMillan, H., & Pierrefeu, G. (2018). Impact of stage measurement errors on streamflow uncertainty. Water Resources Research, 54(3), 1952-1976.
https://doi.org/10.1002/2017WR022039 [
DOI:doi.org/10.1002/2017WR022039]
20. Kiani, R. a. M., M. . (2015). A review of outlier detection methods. International Conference on Research in Science and Technology. 14 December 2015, Kualalumpur, Malaysia. [In Persian]
21. Li, Q., Fisher, K., Meng, W., Fang, B., Welsh, E., Haura, E. B., Koomen, J. M., Eschrich, S. A., Fridley, B. L., & Chen, Y. A. (2020). GMSimpute: a generalized two-step Lasso approach to impute missing values in label-free mass spectrum analysis. Bioinformatics, 36(1), 257-263.
https://doi.org/10.1093/bioinformatics/btz488 [
DOI:doi.org/10.1093/bioinformatics/btz488]
22. Maanavi, M., & Roozbeh, M. (2021). Regression Analysis Methods for High-dimensional Data. Andishe _ye Amari, 25(1), 69-90. [In Persian]
23. Montgomery, D. C., & Runger, G. C. (2019). Applied Statistics and Probability For Engineers. John wiley & sons.
24. Naghdi, R., Shayannezhad, M., & Sadati, N. S. (2010). Comparison of different methods for estimating of monthly discharge missing data in Grand Karoon River Basin. [In Persian]
25. Nazeri Tahrudi, M. (2014). Compared to the normal mechanism becomes the normal monthly rainfall data from different regions of Iran. Water and Soil, 28(2), 365-372. [In Persian]
26. Ordooni, M., Memarian, H., Akbari, M., & Pourreza, M. (2021). Evaluation and Comparison of GPM Satellite Precipitation Data with Meteorological Station using Kolmogorov-Smirnov Test. Iranian Journal of Rainwater Catchment Systems, 9(2), 11-24. [In Persian]
27. Poursalehi, F., Shahidi, A., & Khashei Siuki, A. (2019). Comparison of decision tree m5 and k-nearest neighborhood algorithm models in the prediction of monthly precipitation (case study: birjand synoptic station). Iranian Journal of Irrigation & Drainage, 13(5), 1283-1293. [In Persian]
28. Rahmdel, M., Mohamadian, A., Javanshiri, Z., & Sanaeinejad, S. (2021). Exploratory analysis and in-homogeneity study of temperature and rainfall series of meteorological stations in Iran (period 1989-2018). [In Persian]
29. Rajabi Jaghargh, M., Mousavi Baygi, S. M., Araghi, S. A., & Jabari Noghabi, H. (2024). Calibration of ERA5 daily precipitation using MLP, D-Tree, and KNN algorithms in Razavi Khorasan province. Iranian Journal of Rainwater Catchment Systems, 12(1), 129-147. [In Persian]
30. Schafer, J. L., & Graham, J. W. (2002). Missing data: our view of the state of the art. Psychological Methods, 7(2), 147. [
DOI:10.1037/1082-989X.7.2.147]
31. Shataee, S., Kalbi, S., Fallah, A., & Pelz, D. (2012). Forest attribute imputation using machine-learning methods and ASTER data: comparison of k-NN, SVR and random forest regression algorithms. International Journal of Remote Sensing, 33(19), 6254-6280.
https://doi.org/10.1080/01431161.2012.682661 [
DOI:doi.org/10.1080/01431161.2012.682661]
32. Smiti, A. (2020). A critical overview of outlier detection methods. Computer Science Review, 38, 100306.
https://doi.org/10.1016/j.cosrev.2020.100306 [
DOI:doi.org/10.1016/j.cosrev.2020.100306]
33. Suri, N. M. R., Murty, M. N., & Athithan, G. (2019). Outlier detection: Techniques and Applications. Springer. [
DOI:doi.org/10.1007/978-3-030-05127-3]
34. Tourian, M., Schwatke, C., & Sneeuw, N. (2017). River discharge estimation at daily resolution from satellite altimetry over an entire river basin. Journal of Hydrology, 546, 230-247.
https://doi.org/10.1016/j.jhydrol.2017.01.009 [
DOI:doi.org/10.1016/j.jhydrol.2017.01.009]
35. Umar, N., & Gray, A. (2023). Comparing single and multiple imputation approaches for missing values in univariate and multivariate water level data. Water, 15(8), 1519.
https://doi.org/10.3390/w15081519 [
DOI:doi.org/10.3390/w15081519]