1. Abdollahipoor, A., S. Moazami-Godarzi, M. Zakeri-Nayeri and H. Ghalkhani. 2015. Performance evaluation of three models of Artificial Neural Network, Multivariate Regression and IHACRES to estimate daily flow-case study: Zarrineh rud watershed. National Conference on Civil and Environmental Engineering, Islamic Azad University of Qazvin (In persian).
2. Anonymous. 2009. Reports of the studies on the water resource atlas of the Tasch-Bakhtegan Lake and Maharloo Lake basin. Fars Regional Water Company.
3. ASCE Task Committee. 2000. Artificial neural networks in hydrology, II: Hydrology application Journal of Hydrologic Engineering, 5: 124-137. [
DOI:10.1061/(ASCE)1084-0699(2000)5:2(124)]
4. Astatkie, T. and W.E. Watt. 1988. Multipleinput transfer function modeling of daily Streamflow series using non-linear inputs. Water Resources Research, 34(10): 2717-2725. [
DOI:10.1029/98WR01473]
5. Avarideh, F. 1998. Application of hydroinformatics theory in sediment transport. MSc thesis, Amir Kabir University of Technology (In persian).
6. Beven, K.J. 2001. "Rainfall-runoff modelling: The Primer". John Wiley and Sons Press, Department of Geography Royal Holloway, University of London Egham, Surrey.
7. Carla Carcano E., P. Bartolini, M. Muselli and L. Piroddi. 2008."Jordan recurrent neural network versus IHACRES in modelling daily streamflows". Journal of Hydrology, 362: 291-307. [
DOI:10.1016/j.jhydrol.2008.08.026]
8. Das, G. 2000. Hydrology and soil conservation Engineering, Asoke K. Ghosh, Prentic-Hall of India, 489 pp.
9. Dayhoff, J.E. 1990. Neural Network Principles. Prentice-Hall International. U.S.A. 197 pp.
10. Dousti, M., K. Shahedi, M. Habibnezhad roshan, M. Miryaghoubzadeh. 2014. Simulating daily flow using the IHACRES semi-conceptual model (case study: Tamar watershed). Journal of Soil and Water Conservation, 21(2): 277-292 (In persian).
11. Jahangir, A., M. Raeini and M. Ziatabar-Ahmadi. 2008. Simulation of rainfall -runoff processes with nural Network and comparison with the HEC-HMS model in the Kernel Representative watershed. Journal of Soil and Water (Science and Technology of Agriculture), 22(2): 72-84 (In persian).
12. .Kumar, P., T. Sundara, V. Praveen and M. Anjanaya Prasad. 2016. Artificial Neural Network Model for Rainfall-Runoff-A Case Study. [
DOI:10.14257/ijhit.2016.9.3.24]
13. Littlewood L.G., R.T. Clarke, W. Collischonn and B.F.W. Croke. 2007. Predicting daily Streamflow using rainfall forecasts, a simple loss module and unit hydrographs: Two Brazilian catchments. Environmental Modelling and Software, 22: 1229-1239. [
DOI:10.1016/j.envsoft.2006.07.004]
14. Littlewood, I.G. and A.J. Jakeman. 1994. A new method of rainfall runoff modeling and its application in catchments hydrology. In: Zannetti, P. (Ed.) Environmental Modelling, Computational Mechanics Publications, Southampton, UK, 2: 143-171.
15. Najafi, M.R. 2008. Hydrological Systems (Rainfall Modeling), Tehran University Publication, (In persian).
16. Post, D.A., J.A. Jones and G.E. Grant. 1998. An improved methodology for predicting the daily hydrologic response of ungauged catchments, Environmental Modeling and Software, 13: 395-403. [
DOI:10.1016/S1364-8152(98)00044-9]
17. Sharifi, F., Sh. Saffarpoosh and S.A. Ayobzadeh. 2004. Evaluation of a computer model in simulation of hydrological processes of some watersheds of Iran. Research and construction, 63: 35-42 (In persian).
18. Tokar, A.S. and M. Markus. 2000. Precipitation-runoff modeling using artificial neural networks and conceptual models. Journal of Hydrologic Engineering, 5(2): 156-161. [
DOI:10.1061/(ASCE)1084-0699(2000)5:2(156)]