دوره 9، شماره 18 - ( پاییز و زمستان 1397 )                   جلد 9 شماره 18 صفحات 56-69 | برگشت به فهرست نسخه ها

XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Eskandari A, Faramarzyan yasuj F, Solgi A, Zarei H. Evaluation of Combined ANFIS with Wavelet Transform to Modeling and Forecasting Groundwater Level. jwmr. 2019; 9 (18) :56-69
URL: http://jwmr.sanru.ac.ir/article-1-889-fa.html
اسکندری علی، فرامرزیان یاسوج فرشاد، سِلگی اباذر، زارعی حیدر. ارزیابی ترکیب ANFIS با تبدیل موجک برای مدل سازی و پیش ‌بینی سطح آب زیرزمینی . پ‍‍ژوهشنامه مديريت حوزه آبخيز. 1397; 9 (18) :56-69

URL: http://jwmr.sanru.ac.ir/article-1-889-fa.html


دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز، ایران
چکیده:   (525 مشاهده)
یکی از فاکتورهای مهم در مدیریت صحیح در هر زمین ه­ای داشتن یک دید و نگرش مناسب از اتفاقات آینده در آن زمینه است. در مدیریت منابع آب  و محیط زیست این امر مستثنی نبوده و آگاهی از وضعیت منابع آب در یک منطقه نقش تعیین­کننده­ای در برنامه­ ریزی­ های آبی و کشاورزی آن دارد. در این تحقیق از مدل سیستم استنتاج فازی عصبی تطبیقی (ANFIS) برای پیش­بینی ماهانه سطح آب زیرزمینی حوضه دالکی در استان بوشهر در یک دوره 12 ساله (1392-1381) استفاده شد. به منظور بهبود نتایج این مدل، از تبدیل موجک استفاده شد و سیگنال اصلی به زیرسیگنال­ هایی تجزیه شد و به عنوان ورودی به مدل ANFIS وارد شد تا مدل ترکیبی سیستم استنتاج فازی عصبی تطبیقی-موجک (WANFIS) حاصل گردید. برای پیش­بینی سطح آب زیرزمینی از 5 چاه مشاهده ­ای با متغیرهای رقوم سطح آب زیرزمینی، بارش، تبخیر و دما استفاده شد. نتایج بیانگر این بود که مدل ترکیبی  WANFISدارای عملکرد بهتری از مدل  ANFISبوده است. همچنین مشاهده شد که مدل ترکیبی در برآورد نقاط حدی عملکرد بهتری داشته است. به­طورکلی این شیوه استفاده از نظریه موجک باعث افزایش عملکرد تا 14 درصد شده است. در پایان سطح آب زیرزمینی برای یک سال آتی با مدل برتر برآورد گردید. نتایج حاصل از پیش­بینی سطح آب زیرزمینی حاکی از افزایش عمق دسترسی به آب زیرزمینی در منطقه دالکی داشته است و این مسئله با توجه به اثراتی که بر روی منابع آب و محیط زیست منطقه دارد به عنوان یک هشدار برای مسئولین منطقه مطرح می­باشد.
 
متن کامل [PDF 1413 kb]   (205 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مديريت حوزه های آبخيز
دریافت: ۱۳۹۶/۹/۲۸ | ویرایش نهایی: ۱۳۹۷/۱۰/۳۰ | پذیرش: ۱۳۹۷/۳/۸ | انتشار: ۱۳۹۷/۱۱/۱

فهرست منابع
1. Adamowski, J. and H.F. Chan. 2011. A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407(1-4): 28-40. [DOI:10.1016/j.jhydrol.2011.06.013]
2. Afruzi, A., Zare Abyaneh, H. 2017. Groundwater Level Modeling and Forecasting using the Time Series Models (Case Study: The Plains of Hamadan Province). Journal of Watershed Management Research, 8(15): 102-111 (In Persian).
3. Ebrahimi, H., T. Rajaee. 2017. Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine. Global and Planetary Change, 148:181-191. [DOI:10.1016/j.gloplacha.2016.11.014]
4. Fallah-Mehdipour, E., O. Bozorg Haddad and M.A. Mariño. 2013. Prediction and simulation of monthly groundwater levels by genetic programming. Journal of Hydro-Environment Research, 7(4): 253-260. [DOI:10.1016/j.jher.2013.03.005]
5. Izadi, A., K. Davari, A. Alizadeh, B. Ghahreman, V. Haghayeghi and S.A. Moghaddam. 2007. Estimation groundwater Level Using Artificial Neural Network. Irrigation and Drainage Journal of Iran, 71(2): 1-59 (In Persian).
6. Jang, J.S.R., C.T. Sun, E. Mizutani. 1997. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall International, New Jersey. [DOI:10.1109/TAC.1997.633847]
7. Kişi, Ö. 2009. Evolutionary fuzzy models for river suspended sediment concentration estimation. Journal of Hydrology, 372(1-4): 68-79. [DOI:10.1016/j.jhydrol.2009.03.036]
8. Mallat, S.G. 1998. A wavelet tour of signal processing, San Diego, 123 pp. [DOI:10.1016/B978-012466606-1/50008-8]
9. Moosavi, V., M. Vafakhah, B, Shirmohammadi and M. Ranjbar. 2014. Optimization of Wavelet-ANFIS and Wavelet-ANN Hybrid Models by Taguchi Method for Groundwater Level Forecasting. Arabian Journal for Science and Engineering, 39: 1785-1796. [DOI:10.1007/s13369-013-0762-3]
10. Nakhai, M., A. Saberi Nasr and R. Farajzadeh. 2011. Advantages of Neural-Wavelet Network in Forecasting of Groundwater Fluctuations. Fourth Conference of Iranian Water Resources Management. Amirkabir University of Technology Tehran, (In Persian).
11. Nayak, P., Y.R. Satyaji Rao and K.P. Sudheer. 2006. Groundwater Level Forecasting in a Shallow Aquifer Using Artificial Neural Network Approach. Water Resources Management, 20: 77-90. [DOI:10.1007/s11269-006-4007-z]
12. Nayak, P.C., K.P. Sudheer, D.M. Rangan and K.S. Ramasastri. 2004. A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291(1-2): 52-66. [DOI:10.1016/j.jhydrol.2003.12.010]
13. Nourani, V., A. Asghari Mogaddam and A.O. Naderi. 2008. An ANN-based model for spatiotemporal groundwater level forecasting. Hydrological Processes, 22: 5054-5066. [DOI:10.1002/hyp.7129]
14. Nourani, V., M. Komasi and A. Mano. 2009. A Multivariate ANN-Wavelet Approach for Rainfall-Runoff Modeling. Water Resources Management, 23: 2877-2894. [DOI:10.1007/s11269-009-9414-5]
15. Nourani, V. and S. Mousavi. 2016. Spatiotemporal groundwater level modeling using hybrid artificial intelligence-meshless method. Journal of Hydrology, 536: 10-25. [DOI:10.1016/j.jhydrol.2016.02.030]
16. Rajai, T. and A. Zenivand. 2014. Modeling groundwater level using a wavelet hybrid model- artificial neural network (case study: Sharif Abad plain). Civil Engineering and Environment Journal, 44(3): 77: 63-51 (In Persian).
17. Ramezani-Charmahineh, A. and M. Zounemat-Kermani. 2017. Evaluation of the Efficiency of Support Vector Regression, Multi-Layer Perceptron Neural Network and Multivariate Linear Regression on Groundwater Level Prediction (Case Study: Shahrekord Plain). Journal of Watershed Management Research, 8(15): 1-12 (In Persian).
18. Riad, S., J. Mania, L. Bouchaou and Y. Najjar. 2004. Rainfall-runoff model usingan artificial neural network approach. Mathematical and Computer Modelling, 40(7-8): 839-846. [DOI:10.1016/j.mcm.2004.10.012]
19. Shiri, J., O. Kisi, H. Yoon, K.K. Lee and A. Hossein Nazemi. 2013. Predicting groundwater level fluctuations with meteorological effect implications-A comparative study among soft computing techniques. Computers & Geosciences, 56(0): 32-44. [DOI:10.1016/j.cageo.2013.01.007]
20. Solgi, A. 2014. Predict river flow with hybrid model wavelet-artificial neural network and compraction it with adaptive neuro fuzzy inference system and artificial neural network (case study: Nahavand Gamasiyab river). M.Sc.Thesis, Shahid Chamran University of Ahvaz, Ahvaz, Iran, 164 pp (In Persian).
21. Suryanarayana, C., C. Sudheer, V. Mahammood and B.K. Panigrahi. 2014. An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India. Neurocomputing, 145: 324-335. [DOI:10.1016/j.neucom.2014.05.026]
22. Toolbox of the MATLAB software, R2013a.
23. Wang, W. and J. Ding. 2003. Wavelet Network Model and Its Application to the Prediction of Hydrology. Natureand Science, 1(1): 67-71.
24. Zadeh, L.A. 1965. Fuzzy Sets. Information and control, 8(3): 338-353. [DOI:10.1016/S0019-9958(65)90241-X]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2020 All Rights Reserved | Journal of Watershed Management Research

Designed & Developed by : Yektaweb