دوره 8، شماره 16 - ( پاییز و زمستان 1396 )                   جلد 8 شماره 16 صفحات 177-170 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

(2018). Estimation of landslide size probability occurrence in the Pivejan Watershed (Razavi Khorasan Province). jwmr. 8(16), 170-177. doi:10.29252/jwmr.8.16.170
URL: http://jwmr.sanru.ac.ir/article-1-913-fa.html
پورقاسمی حمیدرضا. تخمین احتمال بزرگی زمین‌لغزش‌های رخ‌داده در حوزه آبخیز پیوه‌ژن (استان خراسان رضوی) پ‍‍ژوهشنامه مديريت حوزه آبخيز 1396; 8 (16) :177-170 10.29252/jwmr.8.16.170

URL: http://jwmr.sanru.ac.ir/article-1-913-fa.html


چکیده:   (3224 مشاهده)
     اطلاع از تعداد، مساحت و فراوانی زمین­لغزش­های رخ­داده در هر منطقه­، نقش مهمی در ارزیابی درازمدت منطقه تحت تاثیر زمین­لغزش داشته و به­منظور تحلیل حساسیت، خطر و ریسک زمین­لغزش استفاده می­شود. در این ارتباط، پژوهش حاضر تلاش می­کند تا به بررسی احتمال بزرگی زمین­لغزش­های شناسایی­شده در حوزه آبخیز پیوه­ژن در استان خراسان رضوی پرداخته شود. در اولین مرحله، با استفاده از تصاویر گوگل ارث و بازدیدهای گسترده میدانی نقشه پراکنش زمین­لغزش­ها تهیه گردید. در مرحله بعد، با استفاده از نرم­افزار ArcGIS و جعبه ابزار XTools Pro، مساحت هر یک از لغزش­ها تعیین گردید. متعاقباً، احتمال بزرگی زمین­لغزش­های شناسایی شده در منطقه مورد مطالعه با استفاده از توابع چگالی احتمالی Double Pareto، Double Pareto ساده­شده و گامای معکوس در نرم­افزار R، محاسبه گردید. هم­چنین در پژوهش حاضر به­منظور بهینه­سازی ضرایب تخمینی از دو روش ناپارامتریک تخمینی چگالی هیستوگرام (HDE) و چگالی کرنل (KDE) و روش پارامتریک تخمینی بیشینه احتمال (ML) استفاده گردید. نتایج تابع چگالی احتمال نشان داد که روش­های تخمین ناپارامتریک (HDE و KDE) نتایج قابل قبولی برای کل لغزش­ها داشتند، اگرچه روش بیشینه احتمال نتایج خوبی ارائه نکرده است. هم­چنین نتایج احتمال رخ­داد لغزش بیان­گر شباهت مدل­های Double Parreto ساده شده و گامای معکوس با روش­های مختلف بهینه­سازی بوده، هرچند نتایج مدل DP با کم‌تخمینی همراه بوده و نتوانسته برآورد صحیحی از احتمال بزرگی لغزش­ها ارائه دهد
متن کامل [PDF 1746 kb]   (953 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: تخصصي
دریافت: 1396/11/10 | ویرایش نهایی: 1396/12/5 | پذیرش: 1396/11/10 | انتشار: 1396/11/10

فهرست منابع
1. Bijukchhen, S. M., P. Kayastha and M. R. Dhital. 2013. A comparative evaluation of heuristic and bivariate statistical modelling for landslide susceptibility mapping in Ghurmi-Dhad Khola, East Nepal. Arabian Journal of Geoscience, 6(8): 2727-2743. [DOI:10.1007/s12517-012-0569-7]
2. Brunetti, M.T., F. Guzzetti and M. Rossi. 2009. Probability distributions of landslide volumes. Nonlinear Processes in Geophysics, 16: 179-188. [DOI:10.5194/npg-16-179-2009]
3. Chen, W., W. Li, E. Hou, H. Bai., H. Chai., D. Wang., X. Cui and Q. Wang. 2014. Application of frequency ratio, statistical index, and index of entropy models and their comparison in landslide susceptibility mapping for the Baozhong Region of Baoji, China. Arabian Journal of Geoscience. DOI: 10.1007/s12517-014-1554-0. [DOI:10.1007/s12517-014-1554-0]
4. Das, I., A. Stein., N. Kerle and V.K. Dadhwal. 2011. Probabilistic landslide hazard assessment using homogeneous susceptible units (HSU) along a national highway corridor in the northern Himalayas, India. Landslides, 8: 293-308. [DOI:10.1007/s10346-011-0257-9]
5. Fell, R., K.K.S. Ho, E. Lacasse and E. Leroi. 2005. A framework landslide risk assessment and management. (Hunger, O, Fell, R., Couture, R., Eberhardt, E., eds.), Taylor and Francis Group, London, 3-26.
6. Galli, M., F. Ardizzone, M. Cardinali, F. Guzzetti and P. Reichenbach. 2008. Comparing landslide inventory maps. Geomorphology, 94: 268-289. [DOI:10.1016/j.geomorph.2006.09.023]
7. Guzzetti, F. 2005. Review and selection of optimal geological models related to spatial information available, Action 1.14. Risk aware is partially co-financed by the European ::union:: under the INTEREG IIIB CADSES program, pp. 44
8. Guzzetti, F. 2006. Landslide hazard and risk assessment. Ph.D. Thesis, Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität, University of Bonn, Bonn, Germany, 389 pp. WWW page, http://geomorphology.irpi.cnr.it/Members/fausto/PhD-dissertation.
9. Guzzetti, F., B. D. Malamud, D. L. Turcotte and P. Reichenbach 2002. Power-law correlations of landslide areas in Central Italy. Earth and Planetary Science Letters, 195: 169-183. [DOI:10.1016/S0012-821X(01)00589-1]
10. Guzzetti, F., P. Reichenbach, M. Cardinali, M. Galli and F. Ardizzone. 2005. Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72: 272- 299. [DOI:10.1016/j.geomorph.2005.06.002]
11. Hungr, O., S.G. Evans and J. Hazard. 1999. Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia. Canadian Geotechnical Journal, 36(2): 224-238. [DOI:10.1139/t98-106]
12. Hovius, N., C. P. Stark, H.-T. Chu and J.-C. Lin. 2000. Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan. Journal of Geology, 108: 73-89. [DOI:10.1086/314387]
13. Jaiswal, P., C. J. van Westen and V. Jetten. 2011. Quantitative estimation of landslide hazard along transportation lines using historical records. Landslides, 8: 279-291. [DOI:10.1007/s10346-011-0252-1]
14. Koehorst, B.A.N., O. Kjekstad, D. Patel, Z. Lubkowski, J. G. Knoeff and G. J. Akkerman. 2005. Work package 6, Determination of Socio-Economic Impact of Natural Disasters, Assessing socio-economic Impact in Europe, pp. 173.
15. Li, L., H. Lan and Y. Yuming Wu. 2016. How sample size can effect landslide size distribution. Geoenvironmental Disasters, 3:18, 11pp. DOI 10.1186/s40677-016-0052-y [DOI:10.1186/s40677-016-0052-y]
16. Malamud, B.D., D.L. Turcotte, F. Guzzetti and P. Reichenbach. 2004. Landslide inventories and their statistical properties, Earth Surface Processes and Landforms, 29(6): 687-711. [DOI:10.1002/esp.1064]
17. Riguer, D and M. Rossi. 2011. Magnitude-frequency probability estimation of landslides. The 24th Annual Geological Convention of the Geological Society of the Philippines 08 December 2011 Crowne Plaza Hotel, Philippines, pp. 19.
18. Rossi, M., F. Ardizzone, M. Cardinali, F. Fiorucci, I. Marchesini, A.C. Mondini, M. Santangelo, S. Ghosh, D.E.L. Riguer, T. Lahousse, K.T., Chang and F. Guzzetti. 2012. A tool for the estimation of the distribution of landslide area, Abstract ID-No.: EGU2012-9438.
19. Singh, A. K. 2010. Bioengineering techniques of slope stabilization and landslide mitigation. Disaster Prevention and Management: An International Journal, 19(3): 384-397. [DOI:10.1108/09653561011052547]
20. Stark, C.P and N. Hovius. 2001. The characterization of landslide size-frequency distributions. Geophysics Research Letter, 28: 1091-1094. [DOI:10.1029/2000GL008527]
21. Varnes, D.J. 1984. Landslide hazard zonation: a review of principles and practice. UNESCO, Paris, pp. 1-55.
22. Wang. Q., W. Li., Y. Wu., Y. Pei and P. Xie. 2016. Application of statistical index and index of entropy methods to landslide susceptibility assessment in Gongliu (Xinjiang, China). Environment Earth Sciences, 75: 598- 599. [DOI:10.1007/s12665-016-5400-4]
23. Wu, C.Y and S.C. Chen. 2013. Integrating spatial, temporal, and size probabilities for the annual landslide hazard maps in the Shihmen watershed, Taiwan. Natural Hazards and Earth System Science, 13: 2353-2367. [DOI:10.5194/nhess-13-2353-2013]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb