1. Abramowitz, M., I.A. Stegun, and D. Miller. 1965. Handbook of mathematical functions with formulas, graphs and mathematical tables (National Bureau of Standards Applied Mathematics Series No. 55). 239-239. [
DOI:10.1115/1.3625776]
2. Allen, R.G., L.S. Pereira, D. Raes and M. Smith. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 FAO, Rome 300:D05109.
3. Da Silva, V.d.P.R. 2004. On climate variability in Northeast of Brazil. Journal of Arid Environments, 58(4): 575-596. [
DOI:10.1016/j.jaridenv.2003.12.002]
4. Dastorani, M. and H. Afkhami. 2011. Application of artificial neural networks on drought prediction in Yazd (Central Iran). Desert, 16(1): 39-48.
5. Farmani, R., H.J. Henriksen, D. Savic and D. Butler. 2012. An evolutionary Bayesian belief network methodology for participatory decision making under uncertainty: An application to groundwater management. Integrated environmental assessment and management, 8(3): 456-461. [
DOI:10.1002/ieam.192]
6. Ghorbani, M.A., J. Shiri and H. Kazemi. 2010. Estimation of maximum, mean and minimum mir temperature in Tabriz City using Artificial Intelligent methods. Water and Soil Science, 20(3): 84-107 (In Persian).
7. Habibipoor, H., M.T. Dastorani, M.R. Ekhtesasi and H. Afkhami. 2012. Evaluation of the Effects of Data range Modification on Efficiency of Regression Decision Tree and Artificial Neural Networks for Drought Prediction, Journal of Watershed Management Research, 2(3): 63-79 (In Persian).
8. Haykin, S. 1994. Neural Networks: A Comprehensive Foundation: Prentice Hall PTR.
9. Hosseini-Moghari, S.M. and S. Araghinejad. 2016. Application of Statistical, Fuzzy and Perceptron Neural Networks in Drought Forecasting (Case Study: Gonbad-e Kavous Station). Water and Soil (Agricultural Sciences and Technology), 30(1): 247-259 (In Persian).
10. Hosking, J.R. 2009. L-Moments Wiley StatsRef: Statistics Reference Online.
11. Kempes, C., O. Myers, D. Breshears and J. Ebersole. 2008. Comparing response of Pinus edulis tree-ring growth to five alternate moisture indices using historic meteorological data Journal of Arid Environments, 72(4): 350-357. [
DOI:10.1016/j.jaridenv.2007.07.009]
12. Koza, J.R. and R. Poli. 2005. Genetic programming. In: Search Methodologies. Springer, pp: 127-164. [
DOI:10.1007/0-387-28356-0_5]
13. Maca, P. and P. Pech. 2016. Forecasting SPEI and SPI drought indices using the integrated artificial neural networks. Computational Intelligence and Neuro science, 2016, 1-17. [
DOI:10.1155/2016/3868519]
14. Madadgar, S. and H. Moradkhani. 2014. Spatio-temporal drought forecasting within Bayesian networks. Journal of Hydrology, 512: 134-146. [
DOI:10.1016/j.jhydrol.2014.02.039]
15. Mehdizadeh, S., J. Behmanesh and H. Saadatnejad Gharahassanlou. 2016. Evaluation of gene expression programming and Bayesian networks methods in predicting daily air temperature. Journal of Agricultural Meteorology, 4(2): 1-13 (In Persian).
16. Miller, G.T. and S. Spoolman. 2012. Environmental science: Cengage Learning.
17. Mishra, A. and V. Desai. 2005. Drought forecasting using stochastic models. Stochastic Environmental Research and Risk Assessment, 19(5): 326-339. [
DOI:10.1007/s00477-005-0238-4]
18. Mishra, A. and V. Desai. 2006. Drought forecasting using feed-forward recursive neural network. ecological modelling, 198(1-2): 127-138. [
DOI:10.1016/j.ecolmodel.2006.04.017]
19. Morid, S., V. Smakhtin and K. Bagherzadeh. 2007. Drought forecasting using artificial neural networks and time series of drought indices. International Journal of Climatology, 27(15): 2103-2111. [
DOI:10.1002/joc.1498]
20. Thornthwaite, C.W. 1948. An approach toward a rational classification of climate. Geographical Review, 38(1): 55-94. [
DOI:10.2307/210739]
21. Vicente-Serrano, S.M., S. Begueria and J.I. Lopez-Moreno. 2010. A multi scalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7): 1696-1718. [
DOI:10.1175/2009JCLI2909.1]
22. Wilhite, D. A. 2000. Drought as a Natural Hazard: Concepts and Definitions, in Wilhite, D. (ed.), Drought: A Global Assessment, Routledge, London & New York, 1: 3-18.
23. Zabihi, M., R. Mostafazadeh and M. Sharari. 2017. Analysis of Wet and Dry Spells Intensity and Duration Using Precipitation-Based and Evapotranspiration Influenced Indices. Journal of Watershed Management Research, 8(15): 125-136 (In Persian). [
DOI:10.29252/jwmr.8.15.125]
24. Zare Amini, F., M.A. Ghorbani and S. Darbandi. 2014. Evaluation of Genetic Programming in Estimation of Soil Temperature. Geographical Space, 47(4): 19-38 (In Persian).
25. Zanetti, S., E. Sousa, V. Oliveira, F.Almeida and S. Bernardo. 2007. Estimating evapotranspiration using artificial neural network and minimum climatological data. Journal of Irrigation and Drainage Engineering, 133(2): 83-89. [
DOI:10.1061/(ASCE)0733-9437(2007)133:2(83)]