دوره 12، شماره 23 - ( بهار و تابستان 1400 )                   جلد 12 شماره 23 صفحات 237-224 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

alizadeh A, rajabi A, shabanlou S, yaghoubi B, yosefvand F. (2021). Simulation of Rainfall- Runoff using Novel Learning Machine in Shaharchay River Basin. J Watershed Manage Res. 12(23), 224-237. doi:10.52547/jwmr.12.23.224
URL: http://jwmr.sanru.ac.ir/article-1-1084-fa.html
علیزاده امیر، رجبی احمد، شعبانلو سعید، یعقوبی بهروز، یوسفوند فریبرز. شبیه‌سازی بارش- رواناب با استفاده از ماشین آموزش نوین در حوضه رودخانه شهرچای پ‍‍ژوهشنامه مديريت حوزه آبخيز 1400; 12 (23) :237-224 10.52547/jwmr.12.23.224

URL: http://jwmr.sanru.ac.ir/article-1-1084-fa.html


1- گروه مهندسی آب، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران
چکیده:   (2824 مشاهده)
در این مطالعه، داده ­های سری زمانی بارش و رواناب حوضه رودخانه شهرچای از سال 2000 تا 2017 با استفاده از یک مدل هوش مصنوعی نوین ترکیبی شبیه­ سازی شد. برای توسعه مدل هوش مصنوعی مذکور سه الگوریتم ماشین آموزش نیرومند (ELM)، تکامل تفاضلی  (DE)و تبدیل موجک (WT) با هم ترکیب شدند و مدل­های ترکیبی SAELM و WSAELM ارائه شد. در ابتدا، موثرترین تاخیرهای داده ­های سری زمانی با استفاده از تابع خود همبستگی شناسایی شدند. سپس با استفاده از این تاخیرها، برای هر یک از مدل­های SAELM و WSAELM هفت مدل هوش مصنوعی تعریف گردید. علاوه بر این 70 درصد مقادیر مشاهداتی برای آموزش مدل­های هوش مصنوعی و 30 درصد باقیمانده نیز برای ارزیابی آن­ها استفاده شدند. برای مدل WSAELM 7 به ­عنوان مدل برتر، مقادیر R2، شاخص پراکندگی  (SI) و ضریب نش(NSC) برای شبیه ­سازی بارش به­ ترتیب مساوی با 0/967، 0/208 و 0/965 بدست آمدند. همچنین تحلیل حساسیت نشان داد که تاخیرهای (t-1)، (t-2) و (t-12) به­عنوان موثرترین تاخیرهای ورودی در نظر گرفته شدند. در انتها برای مدل­های برتر یک تحلیل عدم قطعیت انجام شد.
متن کامل [PDF 2086 kb]   (603 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: هيدرولوژی
دریافت: 1399/1/29 | پذیرش: 1399/4/22

فهرست منابع
1. Akrami, S.A., V. Nourani and S.J.S. Hakim. 2014. Development of nonlinear model based on wavelet-ANFIS for rainfall forecasting at Klang Gates Dam. Water resources management, 28(10): 2999-3018. [DOI:10.1007/s11269-014-0651-x]
2. Azad, A., M. Manoochehri, H. Kashi, S. Farzin, H. Karami, V. Nourani and J. Shiri. 2019. Comparative evaluation of intelligent algorithms to improve adaptive neuro-fuzzy inference system performance in precipitation modelling. Journal of Hydrology, 571: 214-224. [DOI:10.1016/j.jhydrol.2019.01.062]
3. Baba Ali, H. and R. Dehghani. 2017. Comparison of intelligent models in estimating monthly precipitation of Kaka Reza. Ecology, 4(1): 1-11.
4. Cao, J., Z. Lin. and G. Huang. 2012. Self-Adaptive Evolutionary Extreme Learning Machine. Neural processing letters, 36: 285-305. [DOI:10.1007/s11063-012-9236-y]
5. Chang, T.K., A. Talei, C. Quek and V.R. Pauwels. 2018. Rainfall-runoff modelling using a self-reliant fuzzy inference network with flexible structure. Journal of hydrology, 564: 1179-1193. [DOI:10.1016/j.jhydrol.2018.07.074]
6. Dabral, P.P. and M.Z. Murry. 2017. Modelling and forecasting of rainfall time series using SARIMA. Environmental Processes, 4(2): 399-419. [DOI:10.1007/s40710-017-0226-y]
7. Danladi, A., M. Stephen, B.M. Aliyu, G.K. Gaya, N.W. Silikwa and Y. Machael. 2018. Assessing the influence of weather parameters on rainfall to forecast river discharge based on short-term. Alexandria Engineering Journal, 57(2): 1157-1162. [DOI:10.1016/j.aej.2017.03.004]
8. Ghorbani, M., A. Azani and S. Mahmoudi Vanolya. 2015. Rainfall-Runoff Modeling Using Hybrid Intelligent Models. Iran Water Resources Research, 11(2): 146-150.
9. Hasanpour Kashani M., M.A. Ghorbani, Y. Dinpazhouh and S. Shahmorad. 2016. Rainfall-Runoff Simulation in the Navrood River basin using Truncated Volterra Model and Artificial Neural Networks. Jwmr, 6(12): 1-10
10. Huang, G.B., Q.Y. Zhu and C.K. Siew. 2004. Extreme learning Machine: a new learning scheme of feedforward neural networks. International Joint Conference on Neural Networks, 2: 985-90.
11. Khalili, N., S.R. Khodashenas, K. Davari and M. Mousavi Bayegi. 2008. Prediction of daily precipitation using artificial natural networks, case study: synoptic station of Mashhad. Watershed research, 89-99.
12. Kumar, N and G.K. Jha. 2013. A time series an approach for weather forecasting. Int J Control Theory Comput Model (IJCTCM), 3(1): 19-25. [DOI:10.5121/ijctcm.2013.3102]
13. Lee, S., S. Cho and P.M. Wong. 1998. Rainfall prediction using artificial neural networks. Journal of geographic information and Decision Analysis, 2(2): 233-242.
14. 14- Mehr, A.D., V. Nourani, V.K. Khosrowshahi and M.A. Ghorbani. 2019. A hybrid support vector regression-firefly model for monthly rainfall forecasting. International Journal of Environmental Science and Technology, 16(1): 335-346. [DOI:10.1007/s13762-018-1674-2]
15. Mekanik, F., M.A. Imteaz and A. Talei. 2016. Seasonal rainfall forecasting by adaptive network-based fuzzy inference system (ANFIS) using large scale climate signals. Climate dynamics, 46(9-10): 3097-3111. [DOI:10.1007/s00382-015-2755-2]
16. Mislan, H., S. Hardwinarto and M.A. Sumaryono. 2015. Rainfall monthly prediction based on artificial neural network: a case study in Tenggarong Station, East Kalimantan-Indonesia. Procedia Computer Science, 59: 142-151. [DOI:10.1016/j.procs.2015.07.528]
17. Memarian H, M. Pourreza Bilondi and Z.K. Zinat Komeh. 2019. Parameters Optimization of KINEROS2 using Particle Swarm Optimization Algorithm for Single Event Rainfall-Runoff Simulation (Case Study: Tamar Watershed, Golestan, Iran). Jwmr, 9(18): 91-110 [DOI:10.29252/jwmr.9.18.91]
18. Nasseri, M., K. Asghari and M.J. Abedini. 2008. Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network. Expert Systems with Applications, 35(3): 1415-1421. [DOI:10.1016/j.eswa.2007.08.033]
19. Price, K., R.M. Storn and J.A. Lampinen. 2006. Differential evolution: a practical approach to global optimization. Springer Science & Business Media.
20. Purnemat rudsari, A., K. Ghaderi and S. Karimi. 2015. Rainfall Runoff Modeling using Group Method of Data Handling (GMDH) and Artificial Neural Network (ANN) IN in Polrood Basin. Journal of Watershed Management Research, 10: 68-84 (In Persian).
21. Purnomo, H.D., K.D. Hartomo and S.Y.J. Prasetyo. 2017. Artificial neural network for monthly rainfall rate prediction. In IOP Conference Series: Materials Science and Engineering, 180(1): 012057. [DOI:10.1088/1757-899X/180/1/012057]
22. Shafaei, M., J. Adamowski, A. Fakheri-Fard, Y. Dinpashoh and K. Adamowski. 2016. A wavelet-SARIMA-ANN hybrid model for precipitation forecasting. Journal of Water and Land Development, 28(1): 27-36. [DOI:10.1515/jwld-2016-0003]
23. Toth, E., A. Brath and A. Montanari. 2000. Comparison of short-term rainfall prediction models for real-time flood forecasting. Journal of Hydrology, 239(1-4): 132-147. [DOI:10.1016/S0022-1694(00)00344-9]
24. Wong, K.W., P.M. Wong, T.D. Gedeon and C.C. Fung. 1999. Rainfall prediction using neural fuzzy technique. URL, 213-221.
25. Xiang, Y., L. Gou, L. He, S. Xia and W. Wang. 2018. A SVR-ANN combined model based on ensemble EMD for rainfall prediction. Applied Soft Computing, 73: 874-883. [DOI:10.1016/j.asoc.2018.09.018]
26. Yaseen, Z.M., M.I. Ghareb, I. Ebtehaj, H. Bonakdari, R. Siddique, S. Heddam and R. Deo. 2018. Rainfall pattern forecasting using novel hybrid intelligent model based ANFIS-FFA. Water resources management, 32(1): 105-122. [DOI:10.1007/s11269-017-1797-0]
27. Zarei, M.M., M.T. Dastorani, M. Mesdaghi and M. Eshghizadeh. 2018. Evaluation of the Efficiency of Different Artificial Intelligence and Statistical Methods in Estimating the Amount of Runoff (Case Study: Shahid Noori Watershed of Kakhk, Gonabad). Journal of Watershed Management Research, 8(16): 11-21 (In Persian). [DOI:10.29252/jwmr.8.16.11]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb