دوره 12، شماره 23 - ( بهار و تابستان 1400 )                   جلد 12 شماره 23 صفحات 250-238 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Donyaii A, Sarraf A, Ahmadi H. (2021). Operation of the of Golestan Dam Reservoir in Climate Change Conditions Using an Improved Multi-Objective Whale Optimization Algorithm. J Watershed Manage Res. 12(23), 238-250. doi:10.52547/jwmr.12.23.238
URL: http://jwmr.sanru.ac.ir/article-1-1085-fa.html
دنیایی علیرضا، صراف امیرپویا، احمدی حسن. بهره برداری از مخزن سد گلستان در شرایط تغییراقلیم با استفاده از الگوریتم بهینه‌سازی چندهدفه نهنگ بهبودیافته پ‍‍ژوهشنامه مديريت حوزه آبخيز 1400; 12 (23) :250-238 10.52547/jwmr.12.23.238

URL: http://jwmr.sanru.ac.ir/article-1-1085-fa.html


1- گروه مهندسی عمران، واحد رودهن، دانشگاه آزاد اسلامی، رودهن، ایران
چکیده:   (2766 مشاهده)
میزان رواناب ورودی به مخازن سدها به‌طور مستمر تحت تأثیر پارامترهای اقلیمی بوده که این مهم نیز به­نوعی متاثر از پدیده تغییراقلیم است. در این پژوهش، با استفاده از مدل ریزمقیاس نمایی آماری SDSM4.2، پارامترهای تغییراقلیم براساس مدل اقلیمی CANESM2 به­ دست آمد. سپس شبیه‌سازی فرآیند بارش-رواناب توسط مدل ANFIS با ساختار سوگنو و خوشه‌بندی تفاضلی در ورودی مخزن سدگلستان در شرایط تغییراقلیم صورت گرفت و در نهایت از الگوریتم بهینه‌سازی چندهدفه نهنگ بهبودیافته (MOIWOA) که ترکیبی از الگوریتم بهینه‌سازی نهنگ (WOA) و تکامل تفاضلی (DE) است در استخراج قواعد بهره‌برداری بهینه، استفاده گردید. نتایج حاصل از تحلیل عدم قطعیت، حاکی از قرارگیری نتایج شبیه‌سازی دوره تغییراقلیم در باند اطمینان 95درصد در هر دو مرحله واسنجی و صحت­ سنجی بود. ضمنا بهینه‌سازی مخزن گلستان در شرایط پایه (اسفند1384-شهریور1397) و تغییراقلیم (فروردین1420 - مهر 1432) نشان داد که محدوده تغییرات آسیب‌پذیری در شرایط پایه و تغییراقلیم، به ­ترتیب، برابر 18 تا 45  درصد و 10 تا 39 درصد و محدوده تغییرات اطمینان‌پذیری در شرایط پایه و تغییراقلیم، به ­ترتیب، برابر 52 تا 89/5 درصد و 28  تا 90 درصد است و به‌ازای اطمینان‌پذیری 80 درصد، آسیب‌پذیری 31 و 27 درصد، به­ ترتیب، برای شرایط پایه و تغییراقلیم ایجاد می‌شود. مقایسه قواعد بهینه حاصل از شرایط پایه با قواعد بهینه حاصل از تغییر اقلیم نشان داد که نیاز آبی طرح به‌ازای شاخص اطمینان‌پذیری80 درصد تأمین می‌گردد. همچنین میزان رهاسازی در شرایط تغییراقلیم نسبت به شرایط پایه بیشتر بوده، به­ طوریکه این موضوع به‌دلیل افزایش حجم تقاضای آب در شرایط مربوط به تغییراقلیم می‌باشد. از سوی دیگر مقایسه عملکرد مخزن در تأمین نیاز آبی اراضی پایین‌دست در نقطه پَرِتو (اطمینان‌پذیری 80 درصد (در شرایط پایه و تغییراقلیم نیز حکایت از تطبیق بیشتر میزان رهاسازی از مخزن با تقاضا در شرایط تغییراقلیم دارد.
متن کامل [PDF 2142 kb]   (777 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: مديريت حوزه های آبخيز
دریافت: 1399/2/2 | پذیرش: 1399/7/14

فهرست منابع
1. Abbaspour, K.C., J. Yang, I. Maximov, R. Siber, K. Bogner, J. Mieleitner, J. Zobrist and R. Srinivasan. 2007. Modeling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333: 413-430. [DOI:10.1016/j.jhydrol.2006.09.014]
2. Ashofteh, P.S. and O. Bozorg Haddad. 2016. Using a GP optimization tool developed for multipurpose reservoirs in climate change. Iranian Journal of Soil and Water Research, 46(3): 415-422 (In Persian).
3. Ashofteh, P.S. and O. Bozorg Haddad and M.A. Mari˜no. 2013. Climate change impact on reservoir performance indices in agricultural water supply. Journal of Irrigation and Drainage Engineering, 139(2): 19434774. [DOI:10.1061/(ASCE)IR.1943-4774.0000496]
4. Bozorgi S.M. and S. Yazdani. 2019. IWOA: An improved whale optimization algorithm for optimization problems. Journal of Computational Design and Engineering, 6: 243-259. [DOI:10.1016/j.jcde.2019.02.002]
5. Christensen, N. and D.P. Lettenmaier. 2006. A multi-model ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River basin. Journal of Hydrology and Earth System Sciences, 3(6): 3727-3770. [DOI:10.5194/hessd-3-3727-2006]
6. Donyaii, A., and A. Sarraf. 2020. Optimization of Reservoir Operation using a Bioinspired Metaheuristic Based on the COVID-19 Propagation Model. Numerical Methods in Civil Engineering Journal, 5 (1) :15-28. [DOI:10.52547/nmce.5.1.15]
7. Donyaii A., A. Sarraf and H. Ahmadi. 2020a. A Novel Approach to Supply the Water Reservoir Demand Based on a Hybrid Whale Optimization Algorithm. Shock and Vibration, https://doi.org/10.1155/2020/8833866 [DOI:10.1155/2020/8833866.]
8. Donyaii, A., A. Sarraf and H. Ahmadi. 2020b. Application of a new approach in optimizing the operation of the multi-objective reservoir. Journal of Hydraulic Structures, 6(3), 1-20. [DOI:10.1155/2020/8870464]
9. Gong, W., Z. Cai and C.X. Ling. 2011. DE/BBO: A hybrid differential evolution with biogeography-based optimization for global numerical optimization. Soft Computing, 15(4): 645-665. [DOI:10.1007/s00500-010-0591-1]
10. Hessami, M., F. Anctil and A.A. Viau. 2003. An Adaptive Neuro-Fuzzy Inference System for the Post-Calibration of Weather Radar Rainfall estimation. J. Hydroinform., 5: 63-70. [DOI:10.2166/hydro.2003.0005]
11. Ibrahim, R.A., M.A. Elaziz and S. Lu. 2018. Chaotic opposition-based grey-wolf optimization algorithm based on differential evolution and disruption operator for global optimization. Expert Systems with Applications, 108: 1-27. [DOI:10.1016/j.eswa.2018.04.028]
12. IPCC. 2007. Climate Change 2007: The Physical Science Basis," Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
13. Jadon, S.S., R. Tiwari, H. Sharma and J.C. Bansal. 2017. Hybrid artificial bee colony algorithm with differential evolution. Applied Soft Computing, 58: 11-24. [DOI:10.1016/j.asoc.2017.04.018]
14. Jang, J.S.R. 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems Man and Cybernetics, 23: 665-685. [DOI:10.1109/21.256541]
15. Jiang, T., Y.D. Chen, C.Y. Xu, X. Chen, X. Chen and V.P. Singh. 2007. Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China. Journal of Hydrology, 336: 316-333. [DOI:10.1016/j.jhydrol.2007.01.010]
16. Khanjari Sadati, S., M. Speelman, M. Sabouhi, Gitizadeh and B. Ghahraman. 2014. Optimal irrigation water allocation using a genetic algorithm under various weather conditions. Water, 6(10): 3068-3084. [DOI:10.3390/w6103068]
17. Kisi, O., T. Haktanir, M. Ardiclioglu, O. Ozturk, E. Yalcin and S. Uludag. 2009. Adaptive neuro-fuzzy computing technique for suspended sediment estimation. Advances in Engineering Software, 40: 438-444. [DOI:10.1016/j.advengsoft.2008.06.004]
18. Lin, Q., Q. Zhu, P. Huang, J. Chen, Z. Ming and J. Yu. 2015. A novel hybrid multi-objective immune algorithm with adaptive differential evolution. Computers and Operations Research, 62: 95-111. [DOI:10.1016/j.cor.2015.04.003]
19. LotfiManesh, B. and G.A. Barani. 2019. Optimal utilization of surface waters due to climate change effect by genetic algorithm (case study of Zayandeh-rood basin). 5th annual national conference on civil engineering, Architecture and Design of Iran, Mashhad Scientific Institute and research, Mashhad, Iran. (in Persian)
20. Marce, R., M. Comerma, J.C. García and J. Armengol. 2004. A neuro-fuzzy modeling tool to estimate fluvial nutrient loads in watersheds under time varying human impact. Limnology and Oceanography: Methods, 2: 342-355. [DOI:10.4319/lom.2004.2.342]
21. Mazandaranizadeh, H., J. PiadehKoohsar and S.M.K. Sadr. 2019. Evaluation of GA and PSO optimization algorithms in operation of multi-reservoir systems Case study: Gorgan-Rood basin dams. Journal of Water and Soil Conservation Research, 26(2): 239-250.
22. Mirzaee, N., and A. Sarraf. 2021. Application of Data Fusion Models in River Flow Simulation Using Signals of Large-Scale Climate (Case Study: Jiroft Dam Basin), Journal of Watershed Engineering and Management, [DOI:10.22092/ijwmse.2021.343547.1816.]
23. Moazami Goudarzi, F., A. Sarraf and H. Ahmadi. 2020. Prediction of Runoff Within Maharlu Basin for Future 60 Years Using RCP Scenarios, Arabian Journal of Geosciences, 13: 605, 1-17. [DOI:10.1007/s12517-020-05634-x]
24. Noori, M. 2015. Multi-reservoir multi-objective water resources systems management using optimization model terms of climate change. Ph.D. Thesis, Ferdowsi university of Mashhad, Iran, (In Persian).
25. Noori, M., M.B. Sharifi and M. Zarghami. 2015. Effects of climate changes on inflow of reservoirs in the uncertainty condition (case study: Bostan and Golestan dams in the Gorgan-roud catchment), Iranian Journal of Irrigation and Drainage, 2(9): 367-380 (in Persian).
26. Purkey, D.R., B. Joyce, S. Vicuna, M.W. Hanemann, L.L. Dale, D. Yates and J.A. Dracup. 2007. Robust analysis of future climate change impacts on water for agriculture and other sectors: a case study in the Sacramento Valley. Climatic Change, 87: 109-122. [DOI:10.1007/s10584-007-9375-8]
27. Sabziparvar, A.A. and M. Bayat Varkeshi. 2010 Accuracy evaluation of ANN and Neuro-Fuzzy in global solar radiation. Iranian Journal of Physics Research, 10: 347-357 (In Persian).
28. Sanikhani, H., Y. Dinpajoh, S. Pour Yusef, S.Z. Ghavidel and B. Solati. 2014. Investigation of the effects of climate change on runoff of watersheds (Case study: Ajay-Chay catchment in East Azarbaijan province. Water and Soil, 27(6): 1225-1234 (in Persian).
29. Steele- Dunne, S., P. Lynch, R. McGrath, T. Semmler, Sh. Wang, J. Hanafin and P. Nolan. 2008. The impacts of climate change on hydrology in Ireland. Journal of Hydrology, 356(1-2): 28- 45. [DOI:10.1016/j.jhydrol.2008.03.025]
30. Sunyer, M.A., H. Madsen and P.H. Ang. 2012. A comparison of different regional climate models and statistical downscaling methods for extreme rainfall estimation under climate change. Atmospheric Research, 103: 119-128. [DOI:10.1016/j.atmosres.2011.06.011]
31. Takagi, T. and M. Sugeno. 1983. Derivation of fuzzy control rules from human operators control actions. Proceedings of the IFAC symposium on fuzzy information, knowledge representation and decision analysis, 55. [DOI:10.1016/S1474-6670(17)62005-6]
32. Wilby, R.L., C.W. Dawson, C. Murphy, P. O'Connor and E. Hawkins. 2014. The Statistical Downscaling Model- Decision Centric (SDSM-DC): conceptual basis and applications. Climate Research, 61(3): 259-276. [DOI:10.3354/cr01254]
33. Yüzgeç, U. and M. Eser. 2018. Chaotic based differential evolution algorithm for optimization of baker's yeast drying process. Egyptian Informatics Journal, 19: 151-163. [DOI:10.1016/j.eij.2018.02.001]
34. Zamani, R., A. Akhund Ali and M.A. Roozbahani. 2019. Investigating the impact of climate change on runoff Under different probabilistic levels using the uncertainty approach (case study: Yellow River basin). Irrigation Science and Engineering, in press, (in Persian).

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb