1. Akbari, M. 2004. Improvement of irrigation water management by combining satellite and field data and using SWAP simulation model. Ph.D Thesis, Tarbiat Modares University, Tehran (In Persian).
2. Alizadeh, A. 2003. Principles of applied hydrology, Imam Reza University Press, 735 pp (In Persian).
3. Allen, R., R. Waters, M. Tasumi, R. Trezza W. Bastiaanssen. 2002. SEBAL, Surface energybalance algorithms for land, Idaho Implementation. Advanced Training and User's manual, version 1.0.
4. Allen, R.G. 2000. Using the FAO-56 dual crop coecient method over an irrigated region as part 5of an evapotranspiration intercomparison study, Jounal of Hydrology, 229: 27-41, doi:10.1016/s0022-1694(99): 194-8. [
DOI:10.1016/S0022-1694(99)00194-8]
5. Allen, R.G. and W.O. Pruitt. 1991. FAO-24 reference Evapotranspiration factors. Journal of Irrigation and Drainage Engineering, ASCE, 117(5): 758-773. [
DOI:10.1061/(ASCE)0733-9437(1991)117:5(758)]
6. Amiri, M. and H.R. Pourghasemi. 2019. Comparing different methods of potential evapotranspiration and studying temporal and spatial changes in the Mahrlou watershed using GIS. Journal of Watershed Management Research, 10(19): 22-35. [
DOI:10.29252/jwmr.10.19.22]
7. Anvari S., S.J. Mousavi, S. Morid. 2017. Stochastic Dynamic Programming-Based Approach for Optimal Irrigation Scheduling under Restricted Water Availability Conditions. Journal of Irrigation and Drainage, 66(4): 492-500. [
DOI:10.1002/ird.2130]
8. Babamiri. O. and Y. Dinpashoh. 2014. Comparison of Four Temperature Based Reference Crop Evapotranspiration Estimation Method at Urmia Lake Basin. Journal of Irrigation Science and Engineering, 37(1): 43-54.
9. Bastiaanssen, W.G.M., M. Menenti, R.A. Feddes, A.A.M. Holtslag, 1998a. A remotesensing Surface Energy Balance Algorithm for Land (SEBAL), Part 1: formulation. Journal of Hydrology, 212-213: 198-212. [
DOI:10.1016/S0022-1694(98)00253-4]
10. Bastiaanssen, W.G.M., H. Pelgrum, J. Wang, Y. Ma, J. Moreno, G.J. Roerink, W. Vander. 1998b. The Surface Energy Balance Algorithm for Land (SEBAL), Part 2: validation. Journal of Hydrology, 212: 213-229. [
DOI:10.1016/S0022-1694(98)00254-6]
11. Bastiaanssen, W. 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229(1-2): 87-100. [
DOI:10.1016/S0022-1694(99)00202-4]
12. Bastiaanssen, W.G.M., E.J.M. Noordman, H. Pelgrum, G. Davids, B.P. Thoreson and R.G. Allen. 2005. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of Irrigation and Drainage Engineering, 131(1): 85-93 [Doi: 10.1061/ (ASCE) 0733-, 131:1(85)]. [
DOI:10.1061/(ASCE)0733-9437(2005)131:1(85)]
13. Dastorani, M.T., S. Poormohammadi, A.R. Massah Bavani and M.H. Rahimian. 2010. Evapotranspiration Condition in Yazd Station under Uncertainties of Different GHG Emission Scenarios and ET Estimation Models, Journal of Watershed Management Research, 1(2): 1-20 (In Persian).
14. Kerman Meteorological Organization, (http://www.irimo.ir).
15. Khavarian Nahzak, H. 2004. Estimation of evaporation using remote sensing, M.Sc. Thesis, Tarbiat Modares University, Tehran (In Persian).
16. Kite, G. and P. Droogers. 2000. Comparing evapotranspiration estimates from satellites, hydrological models and field data, Journal of Hydrology, 229(1-2): 1-2. [
DOI:10.1016/S0022-1694(99)00193-6]
17. Long, D., V.P. Singh and Z.L. Li. 2011. How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? Journal of Geophysical Research: Atmospheres, 116(D21). [
DOI:10.1029/2011JD016542]
18. Malekinejhad, H. and S. Poormohammadi. 2008. Study the Role of Climatic Parameters in Evaporation Phenomenon at Heterogeneous Zones of Arid and Semi-Arid Regions of Iran. Water Resource Conference, Tabriz. 185 pp (In Persian).
19. Matalas, D. and J. Feyen. 1990. Defining homogenous precipitation regions means of principal component analysis, Journal of Applied Meteorology, 29(9): 892-901.
https://doi.org/10.1175/1520-0450(1990)029<0892:DHPRBM>2.0.CO;2 [
DOI:10.1175/1520-0450(1990)0292.0.CO;2]
20. Mutiga, J., Z. Su and T. Woldai. 2010. Using satellite remote sensing to assess evapotranspiration: Case study of the upper Ewaso Ng'iro North Basin, Kenya. International Journal of Applied Earth Observation and Geoinformation, 12(S1): s100-s108. [
DOI:10.1016/j.jag.2009.09.012]
21. Ramezani Khojeen, A., M.M. Kheirkhah Zarkesh, P. Daneshkar Arasteh, A. Moridi and R. Alimohammadi. 2016. Sensitivity Analysis of Calculated Evapotranspiration using Daily Energy Balance Model and comparing it with SEBAL Model. Iran-Water Resources Research, 185(1): 18-28 (In Persian).
22. Samadianfard, S. and S. Panahi. 2019. Estimating daily reference evapotranspiration using data mining methods of support vector regression and m5 model tree, Journal of Watershed Management Research, 9(18): 157-167 (In Persian). [
DOI:10.29252/jwmr.9.18.157]
23. Sima, S. and M. Tajrishi. 2015. Estimation of Urmia Lake Evaporation Using Remote Sensing Data. Iran-Water Resources Research, 109(1): 32-48.
24. Su, H., E.F. Wood, R. Wojcik and M. McCabe. 2006. Sensitivity Analysis of Regional Scale Evapotranspiration Predictions to the Forcing Data, American Geophysical :union:, Fall Meeting 2007, abstract.
25. Yang, Y., S. Shang and L. Jiang. 2012. Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China. Agricultural and Forest Meteorology, 164: (112-122). [
DOI:10.1016/j.agrformet.2012.05.011]
26. Zhang, X., S. Kang, L. Zhang and J. Lu. 2010. Spatial variation of climatology monthly crop reference evapotranspiration and sensitivity coefficients in Shiyang river basin of northwest China. Agriculture Water Management 97: 1506-1516. [
DOI:10.1016/j.agwat.2010.05.004]