دوره 12، شماره 24 - ( پاییز و زمستان 1400 1400 )                   جلد 12 شماره 24 صفحات 158-147 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholami V, Borna F, Hadian B. (2021). Estimation of Soil Erosion using Artificial Neural Network (ANN) and Geographic Information System (GIS) on the Rangeland Hillslopes. J Watershed Manage Res. 12(24), 147-158. doi:10.52547/jwmr.12.24.147
URL: http://jwmr.sanru.ac.ir/article-1-1100-fa.html
غلامی وحید، برنا فرهاد، هادیان امری محمدعلی. برآورد فرسایش خاک در اراضی شیبدار مرتعی با بکارگیری شبکه عصبی مصنوعی (ANN) و سیستم اطلاعات جغرافیایی (GIS) پ‍‍ژوهشنامه مديريت حوزه آبخيز 1400; 12 (24) :158-147 10.52547/jwmr.12.24.147

URL: http://jwmr.sanru.ac.ir/article-1-1100-fa.html


دانشکده منابع طبیعی دانشگاه گیلان
چکیده:   (2773 مشاهده)
چکیده مبسوط
مقدمه و هدف:  فرسایش خاک از مهمترین مشکلات مدیریت منابع طبیعی بخصوص در اراضی شیبدار مرتعی می‌باشد. از طرفی، برآورد فرسایش بوسیله تجهیزات انداز‌هگیری، هزینه بر و زمان بر است. بنابراین، استفاده از مدلسازی به منظور ارائه یک برآورد دقیق با زمان و هزینه اندک، کارآمد خواهد بود. هدف از تحقیق حاضر ارائه یک روش کارآمد برای برآورد مقادیر فرسایش خاک در اراضی شیبدار دور از دسترس می باشد.
مواد و روش ­ها: در تحقیق حاضر مقادیر فرسایش سالانه خاک به وسیله استقرار پینهای فرسایشی بر روی دامنه با کاربری مرتعی در حوضه آبخیز کسیلیان استان مازندران مورد مطالعه قرار گرفت. مقادیر فرسایش خاک در 109 پین فرسایشی یک سال پس از استفرار آنها براساس تغییرات سطح خاک و اعمال وزن مخصوص خاک برآورد گشت. در این راستا، شبکه عصبی مصنوعی در محیط نرم­افزار NeuroSolutions  با بکارگیری مقادیر فرسایش به عنوان خروجی مدل و عوامل درصد پوشش مرتعی، شیب زمین، طول شیب، شکل شیب (انحناء زمین) و بافت خاک (درصد شن، رس، سیلت) به عنوان ورودی ها، جهت مدلسازی فرسایش بکار گرفته شدند. فرآیند مدلسازی با بکارگیری شبکهMLP  طی سه مرحله آموزش شبکه (65 درصد داده­ ها)، صحت صحنی (10 درصد) و تست (25 درصد داده‌ ها) شبکه عصبی انجام پذیرفت. از سیستم اطلاعات جغرافیایی (GIS) نیز جهت تهیه نقشه فرسایش خاک با بکارگیری ارقام مدلسازی شده فرسایش در اراضی شیبدار استفاده شد.
یافته­ ها: نتایج تست یا اعتباریابی شبکه بهینه شده، دلالت برای کارایی شبکه عصبی در برآورد فرسایش خاک داشته است (Rsqr=0.9). همچنین، تجزیه و تحلیل­های آماری با بکارگیری نرم افزار SPSS و ساختار شبکه عصبی بهینه و آنالیز حساسیت ورودی های شبکه نشان داد که مهمترین عوامل فرسایش خاک به ترتیب میزان پوشش گیاهی، شکل شیب، میزان شیب، طول شیب و خصوصیات خاک می‌باشند. در نهایت، ورودی­های شبکه بهینه اعتباریابی شده، در محیط GIS با پیکسل سایز ده متر با هم تلفیق شدند و با ادغام قابلیت‌های  ANN و  GISنقشه مقادیر فرسایش سالانه خاک اراضی مرتعی مطالعاتی تهیه گردید.
نتیجه­ گیری: متدولوژی ارائه شده می تواند به ­عنوان روشی کارآمد و جایگزینی برای اندازه گیری ها صحرایی فرسایش خاک در مناطق دور از دسترس با کارایی بالا، مورد استفاده قرار گیرد.
 
متن کامل [PDF 1403 kb]   (528 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: فرسايش خاک و توليد رسوب
دریافت: 1399/5/10 | ویرایش نهایی: 1400/12/3 | پذیرش: 1399/7/14 | انتشار: 1400/6/10

فهرست منابع
1. Akay, A.E., O. Erdas, M. Reis and A. Yuksel. 2008. Estimat‌ing sediment yield from a forest road network by using a sediment prediction model and GIS techniques. Build Environ, 43: 687-695. [DOI:10.1016/j.buildenv.2007.01.047]
2. Aldrich, G.A., J.A. Tanaka, R.M. Adams and J.C. Buckhouse. 2005. Economics of western juniper control in central Oregon. Rangeland Ecol & Manage, 58: 542-552. [DOI:10.2111/04-164R2.1]
3. Boardman, J., D.T. Favis-Mortlock and I.D.L. Foster. 2015. A 13-year record of erosion on badland sites in the Karoo, South Africa. Earth Surface Processes and Landforms DOI: 10.1002/esp.3775. [DOI:10.1002/esp.3775]
4. Boardman, J. and D. Favis-Mortlock. 2016. The use of erosion pins in geomorphology, Geomorphological Techniques, Chap. 3, Sec, 5.3
5. Bohm, P. and G. Gerold. 1995. Pedo-hydrological and sediment responses to simulated rainfall on soils of the Konya Uplands (Turkey). Catena, 25(1-41): 63-75. [DOI:10.1016/0341-8162(94)00042-D]
6. Clayton, L. and J.R. Tinker. 1971. Rates of hillslope lowering in the Badlands of North Dakota. North Dakota University Water Resources Research Institute, Report W1-221-012-71. W73.09121.N.T.I.S. PB 220 355, 1-36.
7. Darvari, Z., V. Gholami and A. Joker. 2013. Simulation of karst spring discharge using artificial neural network (Case study: Central Alborz heights). Natural Geography Research, 77: 68-57.
8. Dayhoff, J. 1990. Natural Networks archictures: Anintroduction. New Yourk: Van NostrandReinhold.
9. Descroix, L. and J. Poulenard. 1995. Les formes d'érosion dans la Sierra Madre Ocidentale (Nord Ouest du Mexique). Bull. Lab. Rhod. Géomorphol, 33-34.
10. Di Stefano, C., V. Ferro, P. Porto and G. Tusa. 2000. Slope curvature influence on soil erosion and deposition processes. Water resources research, 36(2): 607-617. [DOI:10.1029/1999WR900157]
11. Emmett, W.W. 1965. The Virgil Network: methods of measurement and a sampling of data collected. International Association of Scientific Hydrology Publication, 66: 89-106.
12. Esmaeeli Gholzom, H. and V. Gholami. 2012. A comparison between natural forests and reforested lands in terms of runoff generation potential and hydrologic response (case study: Kasilian Watershed). Journal Soil & Water Res, 4: 166-173. [DOI:10.17221/18/2012-SWR]
13. Gangopadhyay, S., T. Gautam and A. Gupta. 1999. Subsurface characterization using artificial neural network and GIS Journal of Computing in Civil Engineering, 13(3): 153-161. [DOI:10.1061/(ASCE)0887-3801(1999)13:3(153)]
14. Gholami, G. and M.R. Khaleghi. 2013. The impact of vegetation on the bank erosion (case study: the Haraz river). Journal Soil & Water Res, 8(4): 158-164. [DOI:10.17221/13/2012-SWR]
15. Gholami, V., M.J. Booij, E.N. Tehrani and M.A. Hadian. 2018. Spatial soil erosion estimation using an artificial neural network (ANN) and field plot data. J Catena, 163: 210-218. [DOI:10.1016/j.catena.2017.12.027]
16. Gray, D. 2016. Effect of slope shape on soil erosion, Journal of civil nviron eng, (6)3: 1000231. DOI: 10.4172/2165-784X.1000231. [DOI:10.4172/2165-784X.1000231]
17. Haigh, M.J. 1977. The use of erosion pins in the study of slope evolution. In, Shorter Technical Methods (ll). Technical Bulletin No. 18, British Geomorphological Research Group. Geo Abstracts: Norwich, UK; 31-49.
18. Hancock, G.R., R.J. Loughran, K.G. Evans and R.M. Balog. 2008. Estimation of Soil Erosion Using Field and Modelling Approaches in an Undisturbed Arnhem Land Catchment, Northern Territory, Australia, Geographical Research, 46(3): 333-349. doi: 10.1111/j.1745-5871.2008.00527.x [DOI:10.1111/j.1745-5871.2008.00527.x]
19. Hancock, G.R and J.B.C. Lowry. 2015. Hillslope erosion measurement-a simple approach to a complex process. Hydrological Processes, 29: 4809-4816. [DOI:10.1002/hyp.10608]
20. Ireland, H.A., C.F.S. Sharpe and D.H. Eargle. 1939. Principles of Gully Erosion in the Piedmont of South Carolina.
21. Joker, A., V. Gholami and A. Goli jirandeh. 2013. Principles and Concepts of Geographical Information System, Mazandaran University Press, 200 p (In Persian).
22. Kearney, P., S.J. Fonte, E. Garcia and M. Smukler. 2017. Improving the utility of erosion pins: absolute value of pin height change as an indicator of relative erosion, J. Catena. 163: 427-432. doi.org/10.1016/j.catena.12.008. [DOI:10.1016/j.catena.2017.12.008]
23. Keim, R.F., A.E Skaugset and M. Weiler. 2006. Storage of water on vegetation under simulated rainfall of varying intensity. Adv. Water Resource, 29(7): 974-986. [DOI:10.1016/j.advwatres.2005.07.017]
24. Kirkby, A.V.T and M.J. Kirkby. 1974. Surface wash at the semi-arid break in slope. Zeitschrift fur Geomorphologie Suppl, 21: 151-176.
25. Kirkby, M.J., L.J. Bracken and J. Shannon. 2005. The influence of rainfall distribution and morphological factors on runoff delivery from dryland catchments in SE Spain, Catena. 62: 136-159, doi: 10.1016/j. catena.2005.05.002. [DOI:10.1016/j.catena.2005.05.002]
26. Las Heras, M.M., J.M. Nicolau, L.M. Martín, P. Bradford and B.W. Wilcox. 2010. Plot-scale effects on runoff and erosion along a slope degradation gradient. Water Resour Res, (46): 1-12. doi: 10.1029/2009WR007875. [DOI:10.1029/2009WR007875]
27. Licznar, P. and M.A. Nearingb. 2003. Artificial neural networks of soil erosion and runoff prediction at the plot scale. Catena, 51: 89-114 [DOI:10.1016/S0341-8162(02)00147-9]
28. Loughran, R.J. 1989: The measurement of soil erosion. Progress in Physical Geography, 13: 216-233 [DOI:10.1177/030913338901300203]
29. Maier, H., and G. Dandy. 2000. Neural networks for the predictions and forecasting of water resources variables: review of modeling issues and applications. Environmental Modeling and Software, 15: 101-124. [DOI:10.1016/S1364-8152(99)00007-9]
30. McCoord, N.M. and W.T. Illingworth. 1990. A practical guide to neural nets. Addison-Wesley, Publ. Co. the University of Michigan, 344 p.
31. Mosaffaie, J. and M.R. Ekhtesasi. 2016. Comparison of the relative sediment yield potential of lithological units using sediment grain color. Iranian Journal of Watershed Management Science and Engineering, 10(32): 51-58.
32. Mosaffaie, J. and A. Talebi. 2014. A Statistical View to the Water Erosion in Iran. Extension and Development of Watershed Management, 2(5): 9-17.
33. Mosaffaie, J., M.R. Ekhtesasi and A. Salehpour Jam. 2017. Comparison of fingerprinting & field measurement of erosion in water sediment source tracing. Iranian Journal of Watershed Management Science and Engineering, 12(40): 1-9.
34. Mosaffaie, J., M.R. Ekhtesasi and J.A. Salehpour. 2017. Seasonal variation of the erosion rate using direct measurement. Journal of Watershed Management Research, 30(2): 48-56.
35. Mosaffaie, J., M. Ekhtesasi, M. Dastorani, H. Azimzadeh and M. Zare Chahouki. 2015. Temporal and spatial variation of the water erosion rate. Arabian journal of Geosciences, 8(8): 5971-5979. doi:10.1007/s12517-014-1628-z. [DOI:10.1007/s12517-014-1628-z]
36. Nilsson, P., C.B. Uvo and R. Berndtsson. 2005. Monthly runoff simulation: Comparing and combining conceptual and neural network models. Journal Hydrol.xx. 1-20 pp. [DOI:10.1016/j.jhydrol.2005.08.007]
37. Pierson, F.B., J.D. Batees, T.J. Svejcar and S.P. Hardegree. 2007. Runoff and erosion after cutting western juniper. Rangeland ecol & manage, 60: 285-292. [DOI:10.2111/1551-5028(2007)60[285:RAEACW]2.0.CO;2]
38. Rajurkar, M.P., U.C Kothyari and U.C. Chaube. 2004. Modeling of the daily rainfall-runoff relationship with artificial neural network, Journal Hydrology, 285(1/4): 96-113. [DOI:10.1016/j.jhydrol.2003.08.011]
39. Riad, S., J. Mania, L. Bouchaou and Y. Najjar. 2004. Predicting catchments flow in a semi-arid region via an artificial neural network technique. Journal of hydrological process, 18(13): 2387-2393. doi: 10.1002/hyp.1469. [DOI:10.1002/hyp.1469]
40. Sahour, H., V. Gholami, M. Vazifedan and S. Saeedi. 2021. Machine learning applications for water-induced soil erosion modeling and mapping. Soil and Tillage Research. 211, 105032.1-12. [DOI:10.1016/j.still.2021.105032]
41. Schumm, S.A. 1996. Evolution of drainage systems and slopes in Badlands at Perth Amboy, New Jersey. Geological Society of America Bulletin, 67: 597-646. [DOI:10.1130/0016-7606(1956)67[597:EODSAS]2.0.CO;2]
42. Shi, Z., A. Wen, X. Zhang and D. Yan. 2011. Comparison of the soil losses from 7Be measurements and the monitoring data by erosion pins and runoff plots in the Three Gorges Reservoir region. China. Appl. Radiat. Isot, 69: 1343-1348. [DOI:10.1016/j.apradiso.2011.05.031]
43. Shokrolahi, Sh., H. Moradi and GH. Dianati Tilaki. 2012. Investigation of the effect of soil properties and physiographic factors on plant cover (Case study: part of Pleur summer pastures). Scientific-Research Quarterly Journal of Rangeland and Desert Research of Iran, 19(4): 655-668 (In Persian).
44. Sun, J., X. Yu, H. Li, C.H. Yu, H. Wang, Z. Tu and H. Liang. 2016. Simulated erosion using soils from vegetated slopes in the Jiufeng Mountains. China. Catena, 136: 128-134. [DOI:10.1016/j.catena.2015.02.019]
45. Tahmasebi, P. and A. hezarkhani. 2009. Provide a way to optimize the neural network for estimating carats using information from the Sonajil-Ahar copper porphyry copper system. Journal of Earth Sciences, 21(81): 31-36 (In Persian).
46. Tokar, A.S. and M. Markus. 2000. Precipitation runoff modeling using artificial neural network and conceptual models. Journal of Hydrologic Engineering, 5: 156-161. [DOI:10.1061/(ASCE)1084-0699(2000)5:2(156)]
47. Wischmeier, W.H. and D.D. Smith. 1978. Predicting rainfall erosion losses: a guide to conservation planning. Agric. Handbook No. 282. US Department of Agriculture, Washington, DC.
48. Yair, A. and H. Lavee. 1974. Areal contribution to runoff on scree slopes in an extreme arid environment. A simulated rainstorm experiment. Zeitschr. Fur Geom.
49. Zarechahooki, M., M. Abasi and H. Azarnivand. 2012. Assessing the capability of the artificial neural network model in predicting the spatial distribution of plant species (Case study: Middle Taleghan rangelands). Rangeland Scientific-Research Journal, 8(2): 106-115 (In Persian)
50. Zarepoor, M., A. Shirzadi and S.M. Beiranvand. 2012. Artificial neural networks and border security. Research Security Quarterly, 11(38): 219-240 (In Persian).
51. Zhao, Z., T.L. Chow, H.W. Rees, Q. Yang, Z. Xing and F.R. Meng. 2009. Predict soil texture distributions using an artificial neural network model. Comput Electron Agri, 65(2009): 36-48. [DOI:10.1016/j.compag.2008.07.008]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb