دوره 12، شماره 24 - ( پاییز و زمستان 1400 1400 )                   جلد 12 شماره 24 صفحات 169-159 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Amjadi M, Khaledi Darvishan A. (2021). Downstream Changes in Heavy Metal Concentrations and Pollution Indices of Bed Sediments in Khamsan Representative Watershed. J Watershed Manage Res. 12(24), 159-169. doi:10.52547/jwmr.12.24.159
URL: http://jwmr.sanru.ac.ir/article-1-1118-fa.html
امجدی محمد، خالدی درویشان عبدالواحد. تغییرات غلظت فلزات سنگین و شاخص‌های آلودگی رسوبات بستر در جهت پایاب رودخانه در حوزه آبخیز معرف خامسان پ‍‍ژوهشنامه مديريت حوزه آبخيز 1400; 12 (24) :169-159 10.52547/jwmr.12.24.159

URL: http://jwmr.sanru.ac.ir/article-1-1118-fa.html


دانشکده منابع طبیعی و علوم دریایی دانشگاه تربیت مدرس، نور، ایران
چکیده:   (2326 مشاهده)
چکیده مبسوط
مقدمه و هدف: بار رسوب آبراهه اغلب به‌عنوان یک منبع و شاخص مهم در تغییرات غلظت عناصر ژئوشیمیایی و به ویژه فلزات سنگین برای بررسی میزان تأثیرات انسانی عمل می‌کند. مطالعه روند تغییرات شاخص‌های آلودگی رسوبات در جهت پایاب رودخانه‌ها و عوامل موثر بر آن از مهم‌ترین نیازهای پژوهشی بین‌رشته‌ای است. در این پژوهش غلظت فلزات سنگین و شاخص‌های آلودگی رسوبات بستر در رودخانه اصلی حوزه آبخیز معرف خامسان مورد بررسی قرار گرفت و عوامل موثر بر تغییرات شاخص‌ها در جهت پایاب رودخانه تحلیل شد. این رودخانه یکی از دو رودخانه مهم ورودی به دریاچه سد مخزنی گاوشان است و از این جهت مطالعه آلودگی آب و رسوبات این رودخانه از اهمیت خاصی برخوردار است.
مواد و روش‌ها: برای دستیابی به اهداف پژوهش حاضر، در طول آبراهه اصلی از سراب تا پایاب 10 نمونه از رسوب بستر برداشت شد و غلظت فلزات سنگین شامل برلیم، کروم، نیکل، مس، روی، آرسنیک، سلنیم، کادمیم، جیوه، تالیم و سرب با استفاده از ICP-MS اندازه ­گیری شد. سپس شاخص‌های عامل آلودگی، درجه آلودگی، درجه آلودگی اصلاح‌شده، بار آلودگی و تجمع زمینی محاسبه و تغییرات این شاخص‌ها در جهت پایاب رودخانه اصلی تحلیل شد. هم‌چنین برای تعیین شدت تغییرات غلظت فلزات سنگین در جهت پایاب رودخانه از شاخص درصد تغییرات استفاده شد.
یافته‌ها: یافته‌ها نشان داد که کاهش شیب آبراهه و افزایش تراکم پوشش گیاهی حاشیه آبراهه در کاهش غلظت فلزات سنگین به سمت پایاب و هم‌چنین خنثی کردن اثر منطقه مسکونی مؤثر بوده است. در این رابطه عناصر سمی مانند سلنیم، کادمیم، جیوه و آرسنیک حدود 40 درصد در جهت پایاب کاهش پیدا کرده است و تأثیر بندهای اصلاحی نیز در کاهش انتقال عناصر سرب، روی، کادمیم، مس و سلنیم همراه با رسوب بستر مورد تأیید قرار گرفت. یافته‌ها هم‌چنین نشان داد که بعد از پیوستن آب قنات به آبراهه اصلی، غلظت فلزات سنگین در رسوبات بستر افزایش یافت و بیش‌ترین افزایش با مقادیر 116/1، 114/3، 100/0 و 79/5 درصد به ترتیب در سلنیم، کادمیم، جیوه و برلیم مشاهده شد.
نتیجه‌گیری: جمع‌بندی یافته‌های پژوهش حاضر نشان می‌دهد که اگرچه بر اساس شاخص­ های بررسی‌شده هیچ‌یک از نمونه‌های رسوب بستر رودخانه مورد بررسی از سراب تا پایاب آلوده نیستند، اما روند تغییرات به ویژه در خصوص فلزات سنگین نیکل، روی و کادمیم نگران‌کننده است و می‌تواند هشداری برای آب و رسوبات ورودی به دریاچه سد مخزنی گاوشان باشد.
 
متن کامل [PDF 1081 kb]   (498 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: ساير موضوعات وابسته به مديريت حوزه آبخيز
دریافت: 1399/8/25 | ویرایش نهایی: 1400/12/3 | پذیرش: 1399/11/19 | انتشار: 1400/6/10

فهرست منابع
1. Abrahim, G.M.S. and R.J. Parker. 2008. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136(1-3): 227-238. [DOI:10.1007/s10661-007-9678-2]
2. Bábek, O., T.M. Grygar, M. Faměra, K. Hron, T. Nováková and J. Sedláček. 2015. Geochemical background in polluted river sediments: how to separate the effects of sediment provenance and grain size with statistical rigour. Catena, 135: 240-253. [DOI:10.1016/j.catena.2015.07.003]
3. Barbieri, M. 2016. The Importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J Geol Geophys, 5(1): 1-4. [DOI:10.4172/2381-8719.1000237]
4. Buruiana, D.L., D. Lefter, G.L. Tiron, S. Balta and M. Bordei. 2015. Toxicity of heavy metals on the environment and human health. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 2: 5 p.
5. Brännvall, M.L., R. Bindler, I. Renberg, O. Emteryd, J. Bartnicki and K. Billström. 1999. The Medieval metal industry was the cradle of modern large-scale atmospheric lead pollution in northern Europe. Environmental Science & Technology, 33(24): 4391-4395. [DOI:10.1021/es990279n]
6. Dijkshoorn, W., W. van Broekhoven and J.E.M. Lampe. 1979. Phytotoxicity of zinc, nickel, cadmium, lead, copper and chromium in three pasture plant species supplied with graduated amounts from the soil. NJAS Wageningen Journal of Life Sciences, 27(3): 241-253. [DOI:10.18174/njas.v27i3.17057]
7. Duodu, G.O., A. Goonetilleke and G.A. Ayoko. 2016. Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environmental Pollution, 219: 1077-1091. [DOI:10.1016/j.envpol.2016.09.008]
8. FAO, I. 2015. Status of the world's soil resources (SWSR)-main report. Food and agriculture organization of the United Nations and intergovernmental technical panel on soils, Rome, Italy, 650 p.
9. Gheshlaghi, A. and Sh. Rostami. 2016. Pollution and species formation of heavy metals in the sediments of Siahrood riverbed (Ghaemshahr region-Mazandaran province). Journal of Stratigraphy and Sedimentologi Researches, 32(2): 73-90 (In Persian)
10. Gurumoorthi, K. and R. Venkatachalapathy. 2016. Spatial and seasonal trend of trace metals and ecological risk assessment along Kanyakumari coastal sediments, southern India.
11. Hakanson, L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8): 975-1001. [DOI:10.1016/0043-1354(80)90143-8]
12. Homayounfar, V., A. Khaledi Darvishan and S.J. Alavi. 2017. Effects of Soil Preparation for Laboratorial Erosion Studies on Surface Runoff. Journal of Watershed Management Research, 7(14): 60-68 (In Persian). [DOI:10.29252/jwmr.7.14.68]
13. Huang, B., Z. Yuan, D. Li, M. Zheng, X. Nie and Y. Liao. 2020. Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal (loid) s in soil: a review. Environmental Science: Processes & Impacts, 22(8): 1596-1615. [DOI:10.1039/D0EM00189A]
14. Hudson-Edwards, K.A., M.G. Macklin, J.R. Miller and P.J. Lechler. 2001. Sources, distribution and storage of heavy metals in the Rıo Pilcomayo, Bolivia. Journal of Geochemical Exploration, 72(3): 229-250. [DOI:10.1016/S0375-6742(01)00164-9]
15. Jafarabadi, A.R., A.R. Bakhtiyari, A.S. Toosi and C. Jadot. 2017. Spatial distribution, ecological and health risk assessment of heavy metals in marine surface sediments and coastal seawaters of fringing coral reefs of the Persian Gulf, Iran. Chemosphere, 185: 1090-1111. [DOI:10.1016/j.chemosphere.2017.07.110]
16. Kabata-Pendias, A. 2010. Trace elements in soils and plants. CRC press. [DOI:10.1201/b10158]
17. Katebikord, A., A. Khaledi Darvishan and S.J. Alavi. 2018. Effects of Rainfall Duration on Hydrological Response of Field Plots under Rainfall Simulation. Journal of Watershed Management Research, 9(17): 49-56 (In Persian). [DOI:10.29252/jwmr.9.17.49]
18. Keating, M.H. 1997. Mercury study report to Congress. Volume 2. An inventory of anthropogenic mercury emissions in the United States (No. PB-98-124746/XAB; EPA-452/R-97/004). Environmental Protection Agency, Research Triangle Park, NC (United States). Office of Air Quality Planning and Standards. [DOI:10.2172/575112]
19. Khaledi Darvishan, A., S.H.R. Sadeghi, L. Gholami and A.R. Telvari. 2010. Comparison of USLE Different Versions in Chehelgazi Watershed in Kordistan Province, Iran, Journal of Watershed Management Research, 1(1): 30-43 (In Persian).
20. Khorsand, M., A. Khaledidarvishan and M. Gholamalifard. 2016. Comparison of the results of annual loss estimation of RUSLE model with the data obtained from erosion nails and plots in Khamsan introducing watershed. Iranian journal of Ecohydrology, 3(4): 669-680 (In Persian).
21. Liu, S., C. Wang, J. Yang and Q. Zhao. 2014. Assessing the heavy metal contamination of soils in the water-level fluctuation zone upstream and downstream of the Manwan Dam, Lancang River. Journal of Soils and Sediments, 14(6): 1147-1157. [DOI:10.1007/s11368-014-0855-y]
22. Miller, J.R., K.A. Hudson-Edwards, P.J. Lechler, D. Preston and M.G. Macklin. 2004. Heavy metal contamination of water, soil and produce within riverine communities of the Rıo Pilcomayo basin, Bolivia. Science of the total environment, 320(2-3): 189-209. [DOI:10.1016/j.scitotenv.2003.08.011]
23. Miller, J.R. 1997. The role of fluvial geomorphic processes in the dispersal of heavy metals from mine sites. Journal of geochemical exploration, 58(2-3): 101-118. [DOI:10.1016/S0375-6742(96)00073-8]
24. Mitchell, R.L. and J.C. Burridge. 1979. Trace elements in soils and crops. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 288(1026): 15-24. [DOI:10.1098/rstb.1979.0087]
25. Mohammadi, M., A.K. Darvishan and N. Bahramifar. 2019. Spatial distribution and source identification of heavy metals (As, Cr, Cu and Ni) at sub-watershed scale using geographically weighted regression. International Soil and Water Conservation Research, 7(3): 308-315. [DOI:10.1016/j.iswcr.2019.01.005]
26. Muller, G. 1969. Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2: 108-118.
27. Nagajyoti, P.C., K.D. Lee and T.V.M. Sreekanth. 2010. Heavy metals, occurrence and toxicity for plants: a review. Environmental chemistry letters, 8(3): 199-216. [DOI:10.1007/s10311-010-0297-8]
28. Naseri, H., Z. Key Homayoun and M. Nakhaei. 2011. Effect of natural and anthropogenic factors on water resources quality in lenjanat plain, esfahan, iran. Iranian Journal of Geosciences.
29. Nriagu, J. 1994. Industrial activity and metals emissions Cambridge, UK: Cambridge Univ Press, 277-85 pp. [DOI:10.1017/CBO9780511564550.021]
30. Pandey, J. and R. Singh. 2017. Heavy metals in sediments of Ganga River: up-and downstream urban influences. Applied Water Science, 7(4): 1669-1678. [DOI:10.1007/s13201-015-0334-7]
31. Silva, Y.J.A.B.D., J.R.B. Cantalice, V.P. Singh, C.W.A.D. Nascimento and B.P. Wilcox. 2019. Heavy metal concentrations and ecological risk assessment of the suspended sediments of a multi-contaminated Brazilian watershed. Acta Scientiarum. Agronomy, 41. [DOI:10.4025/actasciagron.v41i1.42620]
32. Sun, L.N., Y.F. Zhang, L.Y. He, Z.J. Chen, Q.Y. Wang, M. Qian and X.F. Sheng. 2010. Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresource Technology, 101(2): 501-509. [DOI:10.1016/j.biortech.2009.08.011]
33. Taylor, M.P., A.K. Mackay, K.A. Hudson-Edwards and E. Holz. 2010. Soil Cd, Cu, Pb and Zn contaminants around Mount Isa city, Queensland, Australia: Potential sources and risks to human health. Applied Geochemistry, 25(6): 841-855. [DOI:10.1016/j.apgeochem.2010.03.003]
34. Turekian, K.K. and K.H. Wedepohl. 1961. Distribution of the elements in some major units of the earth's crust. Geological Society of America Bulletin, 72(2): 175-192. [DOI:10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2]
35. UN-Habitat, I.I. 1996. Report of the UN conference on human settlements (Habitat II). Istanbul: United Nations Development Programme.
36. Underwood, E. 2012. Trace elements in human and animal nutrition. Elsevier.
37. Van Liedekerke, M., G. Prokop, S. Rabl-Berger, M. Kibblewhite and G. Louwagie. 2017. Progress in the management of contaminated sites in Europe.
38. Wang, N., A. Wang, L. Kong and M. He. 2018. Calculation and application of Sb toxicity coefficient for potential ecological risk assessment. Science of the Total Environment, 610: 167-174. [DOI:10.1016/j.scitotenv.2017.07.268]
39. Williams, C.H. and D.J. David. 1976. The accumulation in soil of cadmium residues from phosphate fertilizers and their effect on the cadmium content of plants. Soil Science, 121(2): 86-93 pp. [DOI:10.1097/00010694-197602000-00004]
40. Yarimoghadam, N., M. Cheraghi, A.H. Hasani and A.H. Javid. 2013. Investigation of heavy metals (Zn, Cr, Pb and Cd) in Abshineh river of Hamedan. Health and Development Journal, 2(4): 0-296 (In Persian).
41. Ye, G., Y. Lin, D. Liu, Z. Chen, J. Luo, N. Bolan, J. Fan and W. Ding. 2019. Long-term application of manure over plant residues mitigates acidification, builds soil organic carbon and shifts prokaryotic diversity in acidic Ultisols. Applied Soil Ecology, 133: 24-33. [DOI:10.1016/j.apsoil.2018.09.008]
42. Yi, Y., Z. Yang and S. Zhang. 2011. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental pollution, 159(10): 2575-2585. [DOI:10.1016/j.envpol.2011.06.011]
43. Zhao, F.J., Y. Ma, Y.G. Zhu, Z. Tang and S.P. McGrath. 2015. Soil contamination in China: current status and mitigation strategies. Environmental science & technology, 49(2): 750-759. [DOI:10.1021/es5047099]
44. Zhao, H., B. Cui and K. Zhang. 2010. The distribution of heavy metal in surface soils and their uptake by plants along roadside slopes in longitudinal range gorge region, China. Environmental earth sciences, 61(5): 1013-1023. [DOI:10.1007/s12665-009-0422-9]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به (پژوهشنامه مدیریت حوزه آبخیز (علمی-پژوهشی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Journal of Watershed Management Research

Designed & Developed by : Yektaweb